Block copolymers are recognized as a valuable platform for creating nanostructured materials. Morphologies formed by block copolymer self-assembly can be transferred into a wide range of inorganic materials, enabling applications including energy storage and metamaterials. However, imaging of the underlying, often complex, nanostructures in large volumes has remained a challenge, limiting progress in materials development.
View Article and Find Full Text PDFTopological defects-extended lattice deformations that are robust against local defects and annealing-have been exploited to engineer novel properties in both hard and soft materials. Yet, their formation kinetics and nanoscale three-dimensional structure are poorly understood, impeding their benefits for nanofabrication. We describe the fabrication of a pair of topological defects in the volume of a single-diamond network (space group Fd m) templated into gold from a triblock terpolymer crystal.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Expanding upon the burgeoning discipline of magnonics, this research elucidates the intricate dynamics of spin waves (SWs) within three-dimensional nanoenvironments. It marks a shift from traditionally used planar systems to exploration of magnetization configurations and the resulting dynamics within 3D nanostructures. This study deploys micromagnetic simulations alongside ferromagnetic resonance measurements to scrutinize magnetic gyroids, periodic chiral configurations composed of chiral triple junctions with a period in nanoscale.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Block copolymers (BCPs) are particularly effective in creating soft nanostructured templates for transferring complex 3D network structures into inorganic materials that are difficult to fabricate by other methods. However, achieving control of the local ordering within these 3D networks over large areas remains a significant obstacle to advancing material properties. Here, we address this challenge by directing the self-assembly of a 3D alternating diamond morphology by solvent vapor annealing of a triblock terpolymer film on a chemically patterned substrate.
View Article and Find Full Text PDFIn this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C -edge. From the XMCD sum rules an estimated magnetic moment of 0.
View Article and Find Full Text PDFWe report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C -edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 μ/C atom induced in the graphene layer.
View Article and Find Full Text PDFArrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices.
View Article and Find Full Text PDFFerromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrSbTe thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI].
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2010
The magnetotactic bacterium Magnetospirillum sp. has been cultured and the properties of its endogenous magnetic nanoparticles characterized. Electron-microscopic analyses indicate that the endogenous magnetite nanoparticles in Magnetospirillum sp.
View Article and Find Full Text PDFMed Biol Eng Comput
October 2010
In this review we discuss conventional methods of performing biological assays and molecular identification and highlight their advantages and limitations. An alternative approach based on magnetic nanotechnology is then presented. Firstly, magnetic carriers are introduced and their biocompatibility and functionalisation discussed, with spotlights on functionalisation via self assembled monolayers and on methods of reducing nonspecific binding.
View Article and Find Full Text PDFWe have investigated a new magnetic labelling technology for high-throughput biomolecular identification and DNA sequencing. Planar multi-bit magnetic tags comprising a magnetic barcode formed by an ensemble of micron-sized thin film ferromagnetic Co bars and a 15 x 15 micron Au square for immobilization of probe molecules have been designed and fabricated. We show that by using a globally applied magnetic field and magneto-optical Kerr microscopy the magnetic elements in the multi-bit magnetic tags can be addressed individually and encoded/decoded remotely.
View Article and Find Full Text PDF