The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates.
View Article and Find Full Text PDFKaryopherin-α3 (KPNA3), a karyopherin- α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis.
View Article and Find Full Text PDFMembers of the Mongol imperial family (designated the Golden family) are buried in a secret necropolis; therefore, none of their burial grounds have been found. In 2004, we first discovered 5 graves belonging to the Golden family in Tavan Tolgoi, Eastern Mongolia. To define the genealogy of the 5 bodies and the kinship among them, SNP and/or STR profiles of mitochondria, autosomes, and Y chromosomes were analyzed.
View Article and Find Full Text PDFThe present study was performed to identify the susceptible single nucleotide polymorphisms (SNPs) for the prediction of Korean type 2 diabetes mellitus (T2DM) and to clarify the matrilineal origin of Korean T2DM‑specific SNPs. Fourteen SNPs from the adiponectin (ADIPOQ), hepatocyte nuclear factor 4α, phosphoenolpyruvate carboxykinase 1 and glucokinase genes in the Korean population were analyzed. Only one SNP, ‑11,377 C/G on the ADIPOQ gene, was finally determined to be responsible for the incidence of Korean T2DM (P=0.
View Article and Find Full Text PDFWe have performed analyses using ancient DNA extracted from 25 excavated human bones, estimating around the 1(st) century B.C. Ancient human bones were obtained from Nukdo Island, which is located off of the Korean peninsula of East Asia.
View Article and Find Full Text PDFWe analyzed mitochondrial DNA (mtDNA), Y-chromosome single nucleotide polymorphisms (Y-SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000-year-old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups.
View Article and Find Full Text PDFA novel method of ancient DNA (aDNA) purification was developed using ion-exchange columns to improve PCR-amplifiable DNA extraction from ancient bone samples. Thirteen PCR-resistant ancient bone samples aged 500-3,300 years were tested to extract aDNA using a recently reported, silica-based aDNA extraction method and an ion-exchange column method for the further purification. The PCR success rates of the aDNA extracts were evaluated for the amplification ability of the fragments of mitochondrial DNA, a high-copy DNA, and amelogenin, a low-copy DNA.
View Article and Find Full Text PDF