Publications by authors named "Ljiljana Kuzmanovic"

Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).

View Article and Find Full Text PDF

Durum wheat (DW) is one of the major crops grown in the Mediterranean area, a climate-vulnerable region where the increase in day/night (d/n) temperature is severely threatening DW yield stability. In order to improve DW heat tolerance, the introgression of chromosomal segments derived from the wild gene pool is a promising strategy. Here, four DW- spp.

View Article and Find Full Text PDF

Increased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic species.

View Article and Find Full Text PDF

Frike is an ancient and traditional food product prepared from early harvested whole wheat grain, particularly durum wheat (DW). Due to its many health beneficial effects, frike is considered a functional food. It is also a lucrative commodity, produced in various West Asian and North African countries and typically in Southeastern Turkey.

View Article and Find Full Text PDF

The locus has been proven to confer outstanding resistance to Fusarium Head Blight (FHB) when transferred into wheat, minimizing yield loss and mycotoxin accumulation in grains. Despite their biological relevance and breeding implications, the molecular mechanisms underlying the resistant phenotype associated with have not been fully uncovered. To gain a broader understanding of processes involved in this complex plant-pathogen interaction, we analysed via untargeted metabolomics durum wheat (DW) rachises and grains upon spike inoculation with () and water.

View Article and Find Full Text PDF

Abiotic stress occurrence and magnitude are alarmingly intensifying worldwide. In the Mediterranean basin, heat waves and precipitation scarcity heavily affect major crops such as durum wheat (DW). In the search for tolerant genotypes, the identification of genes/QTL in wild wheat relatives, naturally adapted to harsh environments, represents a useful strategy.

View Article and Find Full Text PDF

Today wheat cultivation is facing rapidly changing climate scenarios and yield instability, aggravated by the spreading of severe diseases such as Fusarium head blight (FHB) and Fusarium crown rot (FCR). To obtain productive genotypes resilient to stress pressure, smart breeding approaches must be envisaged, including the exploitation of wild relatives. Here we report on the assessment of the breeding potential of six durum wheat- spp.

View Article and Find Full Text PDF

Prompted by recent changes in climate trends, cropping areas, and management practices, head blight (FHB), a threatening disease of cereals worldwide, is also spreading in unusual environments, where bread wheat (BW) and durum wheat (DW) are largely cultivated. The scarcity of efficient resistance sources within adapted germplasm is particularly alarming for DW, mainly utilized for human consumption, which is therefore at high risk of kernel contamination by health-dangerous mycotoxins (e.g.

View Article and Find Full Text PDF

For the first time, using chromosome engineering of durum wheat, the underlying genetic determinants of a yield-improving segment from Thinopyrum ponticum (7AgL) were dissected. Three durum wheat-Th. ponticum near-isogenic recombinant lines (NIRLs), with distal portions of their 7AL arm (fractional lengths 0.

View Article and Find Full Text PDF