Automated imaging flow cytometry integrates flow cytometry with digital microscopy to produce high-resolution digital imaging with quantitative analysis. This enables cell identification based on morphology (cell size, shape), antigen expression, quantification of fluorescence signal intensity and localisation of detected signals (i.e.
View Article and Find Full Text PDFImmunophenotyping is the method by which antibodies are used to detect cellular antigens in clinical samples. Although the major role is in the diagnosis and classification of haematological malignancies, applications have expanded over the past decade. Immunophenotyping is now used extensively for disease staging and monitoring, to detect surrogate markers of genetic aberrations, to identify potential immuno-therapeutic targets and to aid prognostic prediction.
View Article and Find Full Text PDFMutations within the nucleophosmin NPM1 gene occur in approximately one-third of cases of acute myeloid leukemia (AML). These mutations result in cytoplasmic accumulation of the mutant NPM protein. NPM1 mutations are currently detected by molecular methods.
View Article and Find Full Text PDFMutations in the C-terminal region of nucleophosmin in acute myeloid leukemia (AML) result in aberrant cytoplasmic nucleophosmin (cNPM) in leukemic blast cells which is detectable by immunocytochemistry in bone marrow trephine (BMT) biopsy sections. We tested whether cNPM is detectable by immunocytochemistry in air-dried smears of AML with nucleophosmin1 (NPM1) mutations. An immunoalkaline phosphatase method was developed using the OCI-AML3 cell line, known to have mutated NPM1, and assessed on blood and marrow smears of 60 AML cases.
View Article and Find Full Text PDFThe majority of Myeloproliferative Neoplasms (MPNs) are characterised by mutations in genes encoding molecules or receptors involved in cell signalling, the most common being the JAK2 V617F mutation. This mutation leads to ligand-independent activation of downstream signalling pathways by constitutive phosphorylation. The signalling pathways affected include the Janus kinase-signal transducers and activators of transcription (JAK-STAT) and phosphotidylinositide-3 kinase (PI3K) pathways, which regulate cell survival and apoptosis respectively.
View Article and Find Full Text PDF