Publications by authors named "Lizhu Ren"

The discovery of ferromagnetism in van der Waals (vdW) materials has enriched the understanding of two-dimensional (2D) magnetic orders and opened new avenues for fundamental physics research and next generation spintronics. However, achieving ferromagnetic order at room temperature, along with strong perpendicular magnetic anisotropy, remains a significant challenge. In this work, we report wafer-scale growth of vdW ferromagnet FeGaTe using molecular beam epitaxy.

View Article and Find Full Text PDF

The electrical control of the non-trivial topology in Weyl antiferromagnets is of great interest for the development of next-generation spintronic devices. Recent studies suggest that the spin Hall effect can switch the topological antiferromagnetic order. However, the switching efficiency remains relatively low.

View Article and Find Full Text PDF

Unidirectional magnetoresistance (UMR) has been intensively studied in ferromagnetic systems, which is mainly induced by spin-dependent and spin-flip electron scattering. Yet, UMR in antiferromagnetic (AFM) systems has not been fully understood to date. In this work, we reported UMR in a YFeO/Pt heterostructure where YFeO is a typical AFM insulator.

View Article and Find Full Text PDF

Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs.

View Article and Find Full Text PDF

Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnPtGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers.

View Article and Find Full Text PDF

Spin-orbit torque (SOT)-induced switching of perpendicular magnetization in the absence of magnetic field is crucial for the application of SOT-based spintronic devices. Recent works have demonstrated that the low-symmetry crystal structure in CuPt/CoPt can give rise to an out-of-plane (OOP) spin torque and lead to deterministic magnetization switching without an external field. However, it is essential to improve OOP effective field for the efficient switching.

View Article and Find Full Text PDF

All-electric switching of perpendicular magnetization is a prerequisite for the integration of fast, high-density, and low-power magnetic memories and magnetic logic devices into electric circuits. To date, the field-free spin-orbit torque (SOT) switching of perpendicular magnetization has been observed in SOT bilayer and trilayer systems through various asymmetric designs, which mainly aim to break the mirror symmetry. Here, we report that the perpendicular magnetization of CoPt single layers within a special composition range (20 < x < 56) can be deterministically switched by electrical current in the absence of external magnetic field.

View Article and Find Full Text PDF

Magnetic tunnel junctions (MTJs) with tunable tunneling magnetoresistances (TMR) have already been proven to have great potential for spintronics. Especially, when ferroelectric materials are used as insulating barriers, more novel functions of MTJs can be realized due to interface magnetoelectric coupling. Here, we demonstrate a very large ferroelectric modulation of TMR (as high as 570% in low-resistance state) in the ferroelectric/magnetic LaSrMnO/BaTiO (LSMO/BTO) junctions and find robust interfacial electronic and magnetic reconstructions via ferroelectric polarization switching.

View Article and Find Full Text PDF

Current-induced spin-orbit torque (SOT) switching of magnetization has attracted great interest due to its potential application in magnetic memory devices, which offer low-energy consumption and high-speed writing. However, most of the SOT studies on perpendicularly magnetized anisotropy (PMA) magnets have been limited to heterostructures with interfacial PMA and poor thermal stability. Here, we experimentally demonstrate a SOT magnetization switching for a ferrimagnetic D0-MnGe film with high bulk PMA and robust thermal stability factor under a critical current density of 6.

View Article and Find Full Text PDF

Exosome released from cells plays an important role in intercellular communication and show great clinical potential in early cancer screening and prognosis. Herein, an ultrasensitive Giant Magnetoresistance (GMR) biosensor was developed for exosome detection, which was based on 2D MoS-FeO nanostructures (MOFE) as magnetic responsive probes for signal amplification. The MOFE can be readily synthesized with simple phase transfer method.

View Article and Find Full Text PDF

We report reversible bipolar resistance switching behaviors in transparent indium-tin oxide (ITO)/LaAlO3/SrTiO3 memristors at room temperature. The memristors exhibit high optical transparency, long retention, and excellent antifatigue characteristics. The high performances are promising for employing ITO/LaAlO3/SrTiO3 memristors in nonvolatile transparent memory and logic devices.

View Article and Find Full Text PDF