Publications by authors named "Lizhi Zhu"

Article Synopsis
  • Blood-brain barrier (BBB) disruption is a key factor in the development of ischemic stroke (IS), and the effects of neferine (Nef) on this disruption are not well understood.
  • In studies using mice and brain cell models, Nef was shown to improve neurobehavioral functions, protect brain endothelial cells, and maintain BBB integrity by upregulating a protein called PGC-1α.
  • Nef reduces oxidative stress and inflammation in brain cells, promoting the repair of the BBB during IS through a specific signaling pathway involving PGC-1α.
View Article and Find Full Text PDF

Metastasis poses a huge obstacle to the survival of breast cancer patients. The microRNA miR-1205 acts as a tumor suppressor in various cancers, but its roles in breast cancer and metastasis remain unclear. To elucidate its function in breast cancer progression, we analyzed miR-1205 expression in human tumor samples and carried out a series of functional studies in in vitro and in vivo.

View Article and Find Full Text PDF

Tumors are often with complex and heterogeneous biological processes, such as glycometabolism and fibrosis, which are the main biochemical pathways that determine therapeutic effects. Specifically, this study aims to assess the diagnosing performance of F-FDG and Ga-FAPI-04 PET for different stages of progressive bone metastases with PSMA-negative pathology. Bone metastatic mouse model of prostate cancer was constructed via intra-bone injection of PSMA-negative prostate cancer PC3 cells.

View Article and Find Full Text PDF

Covalent proteolysis-targeting chimeras (PROTACs) offer enhanced selectivity, prolonged action, and increased efficacy against challenging target proteins. The conventional approach relies on covalent ligands, but our study presents an innovative method employing an -sulfonyl pyridone warhead to selectively target tyrosine (Tyr) residues. The von Hippel-Lindau (VHL) moiety is transferred from the warhead to the exposed Tyr, allowing us to design a STING degrader (DC 0.

View Article and Find Full Text PDF

Cell surface proteins (CSPs) are valuable targets for therapeutic agents, but achieving highly selective CSP enrichment in cellular physiology remains a technical challenge. To address this challenge, we propose a newly developed sulfo-pyridinium ester (SPE) cross-linking probe, followed by two-step imaging and enrichment. The SPE probe showed higher efficiency in labeling proteins than similar NHS esters at the level of cell lysates and demonstrated specificity for Lys in competitive experiments.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) is a promising therapeutic target, especially in cancer treatment. Despite several LSD1 inhibitors being discovered for the cofactor pocket, none are FDA-approved. We aimed to develop stabilized peptides for irreversible LSD1 binding, focusing on unique cysteine residue Cys360 in LSD1 and SNAIL1.

View Article and Find Full Text PDF

Extracellular regulated protein kinases 1/2 (ERK1/2) are key members of multiple signaling pathways, including the ErbB axis. Ectopic ERK1/2 activation contributes to various types of cancer, especially drug resistance to inhibitors of RTK, RAF and MEK, and specific ERK1/2 inhibitors are scarce. In this study, we identified a potential novel covalent ERK inhibitor, Laxiflorin B, which is a herbal compound with anticancer activity.

View Article and Find Full Text PDF

Laxiflorin B is a natural ent-kaurane diterpenoid that can be isolated from the leaves of the Isodon eriocalyx var. laxiflora, a perennial shrub native to parts of China. While this compound has potent cytotoxic activity against various tumor cells, the anti-tumor targets and molecular mechanisms of Laxiflorin B are unclear.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor. Conventional treatments have not achieved breakthroughs in improving survival. Therefore, novel molecular targets and biomarkers need to be identified.

View Article and Find Full Text PDF

This study aimed to establish the radio-immune imaging protocol on the basis of Avidin/Biotin system. The programmed death-ligand 1 (PD-L1) antibody (Atezolizumab) was employed as the primary molecule in targeting PD-L1, and the two-step strategy, consisting of the first injection of Avidin-conjugated PD-L1 monoclonal antibody (Atezolizumab) and the second injection of 7.4 MBq Ga-Biotin with a 60 h interval, was then verified on the colon cancer-bearing mice.

View Article and Find Full Text PDF

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection.

View Article and Find Full Text PDF

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection.

View Article and Find Full Text PDF

The development of bifunction al molecules, which can enable targeted RNA degradation, targeted protein acetylation, or targeted protein degradation, remains a time-consuming process that requires tedious optimization. We propose a split-and-mix nanoplatform that serves as a self-adjustable platform capable of facile screening, programmable ligand ratios, self-optimized biomolecule spatial recognition, and multifunctional applications. Herein, we demonstrate the potential of our proposed nanoplatform by showcasing proteolysis-targeting chimeras (PROTACs), namely, split-and-mix PROTAC (SM-PROTAC).

View Article and Find Full Text PDF

The interaction between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) promotes aggressive progression of pancreatic cancer, and disrupting the tumor-stromal crosstalk is a promising therapeutic strategy. Integrin α5 (ITGA5) is specifically overexpressed in pancreatic cancer stroma and activated PSCs. ITGA5 acts as a mediator in PCCs-PSCs interaction, but its role in regulating biological behaviors of PSCs and PCCs is still not quite clear.

View Article and Find Full Text PDF

Peptide-based neoantigen vaccines hold tremendous potential for personalized tumor immunotherapy. However, effective delivery and controllable release of antigen peptides remain major challenges in stimulating robust and sustained immune responses. Programmable DNA nanodevices provide accurate fixed positions for antigens, which are convenient for the calculation of clinical dosage, and hold great potential as precise carriers.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) is the most abundant internal chemical modification of eukaryotic mRNA and plays diverse roles in gene regulation. The m6A modification plays a significant role in numerous cancer types, including kidney, stomach, lung, bladder tumors, and melanoma, through varied mechanisms. As direct m6A readers, the YT521-B homology domain family proteins (YTHDFs) play a key role in tumor transcription, translation, protein synthesis, tumor stemness, epithelial-mesenchymal transition (EMT), immune escape, and chemotherapy resistance.

View Article and Find Full Text PDF

Epigenetic modifications are essential mechanism by which to ensure cell homeostasis. One such modification is lysine methylation of nonhistone proteins by SETD7, a mono-methyltransferase containing SET domains. SETD7 methylates over 30 proteins and is thus involved in various classical pathways.

View Article and Find Full Text PDF

Dezocine, a dual agonist and antagonist of the μ-opioid receptor and κ-opioid receptor, is widely used as an analgesic in China. At present, there are few studies on anti-tumor effects of dezocine, most of which are used to treat cancer pain. However, it has recently been reported that dezocine can induce apoptosis of triple negative breast cancer cells.

View Article and Find Full Text PDF

A transocular infection has been proved as one of the main approaches that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades the body, and angiotensin-converting enzyme 2 (ACE2) plays a key role in this procedure. Dynamic and quantitative details on virus distribution are lacking for virus prevention and drug design. In this study, a radiotraceable pseudovirus packed with an enhanced green fluorescent protein (EGFP) gene, I-CoV, was prepared and inoculated in the unilateral eye of humanized ACE2 (hACE2) mice or ACE2-knockout (ACE2-KO) mice.

View Article and Find Full Text PDF

The diversity of cyclic peptides was expanded by elaborating Mitsunobu macrocyclization, tethering various hydroxy acid building blocks with different N-amine substituents. This new strategy was then applied in synthesizing peptidomimetic estrogen receptor modulator (PERM) analogs on the solid support. The PERM analogs exhibited increased serum peptidase stability, cell penetration, and estrogen receptor α binding affinity.

View Article and Find Full Text PDF

Selectively activating the distal inactive C-H bond for functionalization is one of the on-going challenge in organic synthetic chemistry. In recent years, benefiting from the development of selective synthesis methods, novel methodologies not only make it possible to break non-traditional chemical bonds and attain more diversity in inactive sites, but also provide more possibilities for the diversification of complex natural products. Direct C-H bond functionalization approaches make it feasible to explore structure-activity relationship (SAR), generate metabolites and derivatives, and prepare biological probes.

View Article and Find Full Text PDF

It is vast significance to explore the spatial and temporal evolution characteristics and influencing factors of herbivorous animal husbandry industry based on the context of China's agriculture pursuing high-quality development. In this paper, we analyze the spatial and temporal evolution of the layout of China's herbivorous animal husbandry industry and its influencing factors based on the spatial autocorrelation analysis, standard deviation ellipse, and spatial Durbin model with data from 1980 to 2017. The results show that there are significant positive autocorrelation characteristics of "high-high" aggregation and "low-low" aggregation in the Chinese herbivorous animal husbandry industry.

View Article and Find Full Text PDF

Capsaicin is an active compound found in plants of the genus; it has a range of therapeutic benefits, including anti-tumor effects. Here we aimed to delineate the inhibitory effects of capsaicin on nasopharyngeal carcinoma (NPC). The anti-cancer effects of capsaicin were confirmed in NPC cell lines and xenograft mouse models, using CCK-8, clonogenic, wound-healing, transwell migration and invasion assays.

View Article and Find Full Text PDF

Cancer is the second leading cause of death globally, responsible for an estimated 9.6 million deaths in 2018, and this burden continues to increase. Therefore, there is a clear and urgent need for novel drugs with increased efficacy for the treatment of different cancers.

View Article and Find Full Text PDF

An oxidative cascade cyclization of β-keto esters has been developed for the construction of the tricyclic picrotoxane motif in a single step, and DFT calculations suggested a possible cationic cyclization mechanism. This cascade cyclization can be operated on a 20 g scale to obtain a 77% total yield of the tricyclic products, which in turn can be converted to versatile intermediates for further elaboration to picrotoxanes and their structurally related compounds.

View Article and Find Full Text PDF