Flexible zinc-air batteries (FZABs) present a promising solution for the next generation of power sources in wearable electronics, owing to their high energy density, cost-effectiveness, and safety. However, solid-state electrolytes for FZABs continue to face challenges related to rapid water loss and low ionic conductivity. In this study, a hydrophilic and stable tetramethylguanidine-modified graphene oxide as an additive, which is incorporated into sodium polyacrylate to develop a high-performance gel polymer electrolyte (GPE), is designed.
View Article and Find Full Text PDFBioresour Technol
December 2024
Microfluidic microbial fuel cells (MMFC) are one of the most promising power sources. However, due to the lack of clarity in the internal operating mechanism, the output performance is suboptimal. Thus, a comprehensive two-dimensional cathode dual-population model is developed to gain deeper insights into internal workings.
View Article and Find Full Text PDFMicro/nano electronic devices heat dissipation depends heavily on the thermal interface materials (TIMs). Despite notable progress, it is hard to efficaciously enhance the thermal properties of the hybrid TIMs with high-load additives due to an absence of effective heat transfer routes. Herein, the low content of three-dimensional (3D) graphene with interconnected networks is adopted as the additive to improve the thermal properties of epoxy composite TIMs.
View Article and Find Full Text PDFFlexible power sources are critical to achieve the wide adoption of portable and wearable electronics. Herein, a facile and general strategy of fabricating a fibrous electrode was developed by 3D active coating technology, in which a stepping syringe with electrode paste was synchronously injected onto a rotating conductive wire, distinguished from the conventional direct-write 3D printing without a current collector. A series of such electrodes with different coating weight can be fabricated accurately and efficiently by adjusting critical process parameters following a set of derived equations.
View Article and Find Full Text PDFThe enhancement of the heat transfer assisted by ultrasound is considered to be an interesting and highly efficient cooling technology, but the investigation and application of ultrasound in minichannel heat sinks to strengthen the flow boiling heat transfer are very limited. Herein, a novel installation of ultrasound transducers in the flow direction of a minichannel heat sink is designed to experimentally study the characteristics of heat transfer in flow boiling and the influence of operation parameters (e.g.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2021
It is critical to develop carbon material anodes with high initial Coulombic efficiency and energy density for sodium ion batteries. Herein, a novel mushroom spore with chitin as carbon precursor is first reported for energy storage, and its special porous spherical structure, fine structure and oxygen functional groups can be accurately controlled by carbonization temperature. The hollow porous carbon spheres obtained from mushroom spore at 1400 °C have appropriate porous structure, d spacing (0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Harvesting energy from the ambient environment provides great promise in the applications of micro/nanodevices and self-powered systems. Herein, we report a novel energy-scavenging method where an ionic solution infiltrating into a three-dimensional graphene (3DG) membrane can spontaneously generate electricity under ambient conditions. A constructed 3DG nanogenerator (3DGNG) with an effective size of 0.
View Article and Find Full Text PDFSupported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [C(n)mim][NTf2] (n=2.4, 6, 8.
View Article and Find Full Text PDF