Publications by authors named "Lizette Utomo"

Chronic lower back pain caused by intervertebral disc degeneration and osteoarthritis (OA) are highly prevalent chronic diseases. Although pain management and surgery can alleviate symptoms, no disease-modifying treatments are available. mRNA delivery could halt inflammation and degeneration and induce regeneration by overexpressing anti-inflammatory cytokines or growth factors involved in cartilage regeneration.

View Article and Find Full Text PDF

Clinical implementation of endochondral bone regeneration (EBR) would benefit from the engineering of devitalized cartilaginous constructs of allogeneic origins. Nevertheless, development of effective devitalization strategies that preserves extracellular matrix (ECM) is still challenging. The aim of this study is to investigate EBR induced by devitalized, soft callus-mimetic spheroids.

View Article and Find Full Text PDF

Pro-inflammatory cytokines are considered to play a major role in osteoarthritis (OA), yet so far, the specific cytokines involved in the pathology of OA have not been identified. Oncostatin M (OSM) is a cytokine from the interleukin 6 (IL-6) family that has been shown to be elevated in synovial fluid of most rheumatoid arthritis (RA) patients, but only in a limited subset of OA patients. Little is known about OSM in the different joint tissues during OA and how its expression correlates with hallmarks of disease.

View Article and Find Full Text PDF

Magnesium (Mg)-based alloys are promising biodegradable materials for bone repair applications. However, due to their rapid degradation and high corrosion rate, Mg-based alloys are typically associated with infections and implant failure. This study evaluated the synergistic stability and anti-inflammatory properties that could potentially be achieved by the modification of the Mg alloy with graphene nanoparticles (Gr).

View Article and Find Full Text PDF

Macrophages play an important role in the development and progression of osteoarthritis (OA). The aim of this study was to identify macrophage phenotypes in synovium and monocyte subsets in peripheral blood in C57BL/6 mice by destabilizing the medial meniscus (DMM), and the association of macrophage subsets with OA features. DMM, sham, and non-operated knees were histologically assessed between 1 and 56 days for macrophage polarization states by immunohistochemistry (IHC), cartilage damage, synovial thickening, and osteophytes (n = 9 per timepoint).

View Article and Find Full Text PDF

Gelatine methacryloyl (GelMA) hydrogels are widely used in studies aimed at cartilage regeneration. However, the endotoxin content of commercially available GelMAs and gelatines used in these studies is often overlooked, even though endotoxins may influence several cellular functions. Moreover, regulations for clinical use of biomaterials dictate a stringent endotoxin limit.

View Article and Find Full Text PDF

For creating functional tissue analogues in tissue engineering, stem cells require very specific 3D microenvironments to thrive and mature. Demanding (stem) cell types that are used nowadays can find such an environment in a heterogeneous protein mixture with the trade name Matrigel. Several variations of synthetic hydrogel platforms composed of poly(ethylene glycol) (PEG), which are spiked with peptides, have been recently developed and shown equivalence to Matrigel for stem cell differentiation.

View Article and Find Full Text PDF

Meniscal damage is, despite its major role in knee osteoarthritis (OA), often neglected in OA animal models. We evaluated structural meniscal degeneration during the course of OA in the murine collagenase-induced OA (CIOA) model. To investigate this, OA was induced in the knee joints of 33 male C57BL/6 mice by an intra-articular injection of 10U collagenase.

View Article and Find Full Text PDF

After implantation of a biomaterial, an inflammatory response involving macrophages is induced. The behavior of macrophages depends on their phenotype, and by directing macrophage polarization unwanted effects may be avoided. In this study, the possibility to modulate the behavior of macrophages activated by biomaterials was assessed in an in vitro model.

View Article and Find Full Text PDF

It is well-accepted that articular (ART) cartilage composition and tissue architecture are intimately related to mechanical properties. On the other hand, very little information about other cartilage tissues is available, such as elastin-rich auricular (AUR) cartilage. While thorough investigation of ART cartilage has enhanced osteoarthritis research, ear cartilage reconstruction and tissue engineering (TE) could benefit in a similar way from in-depth analysis of AUR cartilage properties.

View Article and Find Full Text PDF

Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment.

View Article and Find Full Text PDF