Introduction: Fetal myelomeningocele (MMC) repair improves lower extremity motor function. We have previously demonstrated that augmentation of fetal MMC repair with placental mesenchymal stromal cells (PMSCs) seeded on extracellular matrix (PMSC-ECM) further improves motor function in the ovine model. However, little progress has been made in improving bowel and bladder function, with many patients suffering from neurogenic bowel and bladder.
View Article and Find Full Text PDFPurpose: Augmentation of in utero myelomeningocele repair with human placental mesenchymal stromal cells seeded onto extracellular matrix (PMSC-ECM) improves motor outcomes in an ovine myelomeningocele model. This study evaluated the safety of PMSC-ECM application directly onto the fetal spinal cord in preparation for a clinical trial.
Methods: Laminectomy of L5-L6 with PMSC-ECM placement directly onto the spinal cord was performed in five fetal lambs at gestational age (GA) 100-106 days.
Background: Myelomeningocele (MMC) is the congenital failure of neural tube closure in utero, for which the standard of care is prenatal surgical repair. We developed clinical-grade placental mesenchymal stromal cells seeded on a dural extracellular matrix (PMSC-ECM), which have been shown to improve motor outcomes in preclinical ovine models. To evaluate the long-term safety of this product prior to use in a clinical trial, we conducted safety testing in a murine model.
View Article and Find Full Text PDFBackground: While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC.
View Article and Find Full Text PDFPrenatal stem cell-based regenerative therapies have progressed substantially and have been demonstrated as effective treatment options for fetal diseases that were previously deemed untreatable. Due to immunoregulatory properties, self-renewal capacity, and multilineage potential, autologous human placental chorionic villus-derived mesenchymal stromal cells (CV-MSCs) are an attractive cell source for fetal regenerative therapies. However, as a general issue for MSC transplantation, the poor survival and engraftment is a major challenge of the application of MSCs.
View Article and Find Full Text PDFBackground: Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the Factor VIII (FVIII) gene leading to deficient blood coagulation. As a monogenic disorder, HA is an ideal target for cell-based gene therapy, but successful treatment has been hampered by insufficient engraftment of potential therapeutic cells.
Methods: In this study, we sought to determine whether co-transplantation of endothelial colony-forming cells (ECFCs) and placenta-derived mesenchymal stromal cells (PMSCs) can achieve long-term engraftment and FVIII expression.