CO emissions from headwater streams are a crucial component of greenhouse gas flux in inland waters. However, the influence of groundwater, a major contributor to streams in the Asian Water Tower (Qinghai-Tibet Plateau, QTP), on CO levels remains unclear. This study employed stable isotope analysis and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to demonstrate that groundwater-derived dissolved inorganic carbon (DIC) significantly enhanced CO supersaturation in the Shuiluo stream on the QTP.
View Article and Find Full Text PDFThe bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients.
View Article and Find Full Text PDFDissolved inorganic carbon (DIC) represents a major global carbon pool and the flux from rivers to oceans has been observed to be increasing. The effect of weathering with respect to increasing DIC has been widely studied in recent decades; however, the influence of dissolved organic matter (DOM) on increasing DIC in large rivers remains unclear. This study employed stable carbon isotopes and Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) to investigate the effect of the molecular composition of DOM on the DIC in the Yangtze River.
View Article and Find Full Text PDFCombustion-driven particulate black carbon (PBC) is a crucial slow-cycling pool in the organic carbon flux from rivers to oceans. Since the refractoriness of PBC stems from the association of non-homologous char and soot, the composition and source of char and soot must be considered when investigating riverine PBC. Samples along the Yangtze River continuum during different hydrological periods were collected in this study to investigate the association and asynchronous combustion drive of char and soot in PBC.
View Article and Find Full Text PDFThe Yangtze River, the largest river in Asia, plays a crucial role in linking continental and oceanic ecosystems. However, the impact of natural and anthropogenic disturbances on composition and transformation of dissolved organic matter (DOM) during long-distance transport and seasonal cycle is not fully understood. By using a combination of elemental, isotopic and optical techniques, as well as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we investigated DOM abundance and composition along the whole mainstream at highly spatial resolution in the dry and early wet seasons.
View Article and Find Full Text PDFCombustion-derived black carbon (BC) is an important component of sedimentary carbon pool. Due to different physicochemical properties, determining the source of char and soot is crucial for BC cycling, especially for nonhomologous char and soot in the Tibetan Plateau (TP). This study analyzed the sequestration and source of BC, char, and soot in the Dagze Co (inner TP) sediment core via the content and δC, revealing the biomass and fossil fuel driving on nonsynchronous char and soot and their response to local anthropogenic activities and atmospheric transmission.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) have received worldwide attention due to their potential teratogenic, persistent, and carcinogenic characteristics. In this study, the PAHs concentrations in two dated sediment cores taken from central Tibetan Plateau (TP) were analyzed to study the deposition history, potential sources, ecological risks, and influencing factors. Total concentration of PAHs (∑PAHs) ranged from 50.
View Article and Find Full Text PDFBlack carbon (BC) is a retarder in carbon cycle, and the proportion of char and soot in BC restricts the significance of BC as a sink in carbon cycle. Tracing the sources of char and soot is helpful for in-depth understanding the anthropogenic-driven burial and pattern of BC, and is crucial for regulating emissions of BC and impact of BC on carbon cycle/climate change. This study investigated source-driven BC via the concentration and δC of BC (char and soot) in a Plateau lake sediment.
View Article and Find Full Text PDFBlack carbon (BC), the highly recalcitrant aromatic carbonaceous from the incomplete combustion of fossil fuel and biomass, is an important carbon sink in carbon cycle. Char and soot, the main components of BC, have significantly different origin and physicochemical characteristics (particle sizes and resultant transportability). The limited understanding of char and soot sources leads to poor insight into the effect of BC on carbon cycle.
View Article and Find Full Text PDFBlack carbon (BC), characterized by high aromaticity and stability, has been recognized as a substantial fraction of the carbon pool in soil and sediment. The effect of BC on the particulate organic carbon (POC) pool in lake water, which is an important medium of carbon transmission and transformation, has not been thoroughly studied. The investigations of BC composition and distribution, POC, polycyclic aromatic hydrocarbons (PAHs), and stable carbon and nitrogen isotopes were conducted in a eutrophic urban lake, Taihu Lake, which is the third largest freshwater lake in China.
View Article and Find Full Text PDFParticulate organic carbon (POC) sources, which regulate dissolved organic carbon, sediment organic carbon, and inorganic carbon via deposition, degradation, and mineralization, play an important role in lake ecosystems. Linear or Bayesian algorithms on isotope and n-alkanes have been widely used to identify the source proportion of organic carbon. However, the applicability of these methods is ambiguous because of the unilateral advantages of each model and trace factors.
View Article and Find Full Text PDF