Sulfate- and sulfite-reducing bacteria (SRB) are a group of strict anaerobes found within the human gut. , a sulfite-reducing bacterium which produces hydrogen sulfide (HS) from taurine and isethionate respiration, is a common member of the healthy commensal human gut microbiota but has been implicated in several disease states including inflammatory bowel disease and colorectal cancer. , one of the most prominent gut bacteria, has sulfatases which release sulfate, serving as a potential substrate for sulfate-reducing bacteria.
View Article and Find Full Text PDFSpontaneous fermentation of cereals like millet involves a diverse population of microbes from various sources, including raw materials, processing equipment, fermenting receptacles, and the environment. Here, we present data on the predominant microbial species and their succession at each stage of the Hausa koko production process from five regions of Ghana. The isolates were enumerated using selective media, purified, and phenotypically characterised.
View Article and Find Full Text PDFListeria monocytogenes is a rare cause of prosthetic joint infections (PJI). In this study, we describe a case of recurrent L. monocytogenes infections, 39 months apart, following debridement and retention of a prosthetic hip.
View Article and Find Full Text PDFThe composition and diversity of animal microbiomes is shaped by a variety of factors, many of them interacting, such as host traits, the environment, and biogeography. Hybrid zones, in which the ranges of two host species meet and hybrids are found, provide natural experiments for determining the drivers of microbiome communities, but have not been well studied in marine environments. Here, we analysed the composition of the symbiont community in two deep-sea, Bathymodiolus mussel species along their known distribution range at hydrothermal vents on the Mid-Atlantic Ridge, with a focus on the hybrid zone where they interbreed.
View Article and Find Full Text PDFSulfate-reducing bacteria (SRB) are widespread in human guts, yet their expansion has been linked to colonic diseases. We report the isolation, sequencing and physiological characterization of strain QI0027 , a novel SRB species belonging to the class Desulfovibrionia. Metagenomic sequencing of stool samples from 45 Chinese individuals, and comparison with 1690 Desulfovibrionaceae metagenome-assembled genomes recovered from humans of diverse geographic locations, revealed the presence of QI0027 in 22 further individuals.
View Article and Find Full Text PDFis a commensal species that has been increasingly identified as a nosocomial agent. Despite the interest, little is known about the ability of isolates to adapt to different ecological niches through comparisons at genotype or phenotype levels. One niche where has been reported is the human gut.
View Article and Find Full Text PDFA novel Gram-positive, catalase negative, rod-shaped strain, FI11369, was isolated from , a traditional West African fermented food derived from cassava. Based on 16S rRNA gene sequence similarity, the closest type strains were LMG 26013 (99.4 % similarity), NBRC 107333 (99.
View Article and Find Full Text PDFDeep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host-microbe associations. However, how host-symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B.
View Article and Find Full Text PDFGenetic diversity of closely related free-living microorganisms is widespread and underpins ecosystem functioning, but most evolutionary theories predict that it destabilizes intimate mutualisms. Accordingly, strain diversity is assumed to be highly restricted in intracellular bacteria associated with animals. Here, we sequenced metagenomes and metatranscriptomes of 18 Bathymodiolus mussel individuals from four species, covering their known distribution range at deep-sea hydrothermal vents in the Atlantic.
View Article and Find Full Text PDFSponges host a remarkable diversity of microbial symbionts, however, the benefit their microbes provide is rarely understood. Here, we describe two new sponge species from deep-sea asphalt seeps and show that they live in a nutritional symbiosis with methane-oxidizing (MOX) bacteria. Metagenomics and imaging analyses revealed unusually high amounts of MOX symbionts in hosts from a group previously assumed to have low microbial abundances.
View Article and Find Full Text PDFFI11154 was isolated from kunu-zaki, a Nigerian traditional fermented millet-based food. Here, we present the first complete genome sequence of this species. The genome consists of five replicons and contains genes related to iron uptake and phosphatase activities.
View Article and Find Full Text PDF, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics.
View Article and Find Full Text PDFCycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that, in contrast to all previously known Cycloclasticus, the symbiotic Cycloclasticus appears to lack the genes needed for PAH degradation.
View Article and Find Full Text PDFThe hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners.
View Article and Find Full Text PDFDeep-sea hydrothermal vents are patchily distributed ecosystems inhabited by specialized animal populations that are textbook meta-populations. Many vent-associated species have free-swimming, dispersive larvae that can establish connections between remote populations. However, connectivity patterns among hydrothermal vents are still poorly understood because the deep sea is undersampled, the molecular tools used to date are of limited resolution, and larval dispersal is difficult to measure directly.
View Article and Find Full Text PDFBathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer.
View Article and Find Full Text PDF