Publications by authors named "Lizandra Jimenez"

Small cell lung cancer (SCLC) tumors are made up of distinct cell subpopulations, including neuroendocrine (NE) and non-neuroendocrine (non-NE) cells. While secreted factors from non-NE SCLC cells have been shown to support the growth of the NE cells, the underlying molecular factors are not well understood. Here, we show that exosome-type small extracellular vesicles (SEVs) secreted from non-NE SCLC cells promote adhesion and survival of NE SCLC cells.

View Article and Find Full Text PDF

Extracellular vesicle (EV)-carried miRNAs can influence gene expression and functional phenotypes in recipient cells. Argonaute 2 (Ago2) is a key miRNA-binding protein that has been identified in EVs and could influence RNA silencing. However, Ago2 is in a non-vesicular form in serum and can be an EV contaminant.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.

View Article and Find Full Text PDF

Cancer is a complex, dynamic disease that despite recent advances remains mostly incurable. Inter- and intratumoral heterogeneity are generally considered major drivers of therapy resistance, metastasis, and treatment failure. Recent advances in high-throughput experimentation have produced a wealth of data on tumor heterogeneity and researchers are increasingly turning to mathematical modeling to aid in the interpretation of these complex datasets.

View Article and Find Full Text PDF
Article Synopsis
  • The tumor microenvironment is a complex network where tumor cells interact with each other and with immune and stromal cells, influencing tumor behavior.
  • Extracellular vesicles play a key role in this communication by transporting bioactive molecules, impacting tumor growth, angiogenesis, metastasis, and resistance to drugs.
  • Research explores how targeting the secretion of these extracellular vesicles could potentially lead to new therapeutic strategies to combat tumor progression and drug resistance in cancer.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties.

View Article and Find Full Text PDF

Invasion is a hallmark of advanced head and neck squamous cell carcinoma (HNSCC). We previously determined that low relative miR-375 expression was associated with poor patient prognosis. HNSCC cells with increased miR-375 expression have lower invasive properties and impaired invadopodium activity.

View Article and Find Full Text PDF

Context: Head and neck squamous cell carcinoma (HNSCC) is a highly invasive cancer with an association with locoregional recurrence and lymph node metastasis. We have previously reported that low microRNA-375 (miR-375) expression levels correlate with poor patient survival, increased locoregional recurrence, and distant metastasis. Increasing miR-375 expression in HNSCC cell lines to levels found in normal cells results in suppressed invasive properties.

View Article and Find Full Text PDF

Context: The highly invasive properties demonstrated by head and neck squamous cell carcinoma (HNSCC) are often associated with locoregional recurrence and lymph node metastasis in patients and is a key factor leading to an expected 5-year survival rate of approximately 50% for patients with advanced disease. It is important to understand the features and mediators of HNSCC invasion so that new treatment approaches can be developed.

Objectives: To provide an overview of the characteristics, mediators, and mechanisms of HNSCC invasion.

View Article and Find Full Text PDF

Small, noncoding microRNAs (miRNAs) have been shown to be abnormally expressed in every tumor type examined. We used comparisons of global miRNA expression profiles of head and neck squamous cell carcinoma (HNSCC) samples and adjacent normal tissue to rank those miRNAs that were most significantly altered in our patient population. Rank Consistency Score analysis revealed miR-375 to have the most significantly lowered miRNA levels in tumors relative to matched adjacent nonmalignant tissue from the same patient among 736 miRNAs that were evaluated.

View Article and Find Full Text PDF