Huntington disease (HD) is an adult-onset neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms that is caused by a CAG expansion in the HTT gene. Palmitoylation is the addition of saturated fatty acids to proteins by DHHC palmitoylacyl transferases. HTT is palmitoylated by huntingtin interacting proteins 14 and 14-like (HIP14 and HIP14L or ZDHHC17 and 13 respectively).
View Article and Find Full Text PDFHuntington disease is an adult onset neurodegenerative disease characterized by motor, cognitive, and psychiatric dysfunction, caused by a CAG expansion in the HTT gene. Huntingtin Interacting Protein 14 (HIP14) and Huntingtin Interacting Protein 14-like (HIP14L) are palmitoyl acyltransferases (PATs), enzymes that mediate the post-translational addition of long chain fatty acids to proteins in a process called palmitoylation. HIP14 and HIP14L interact with and palmitoylate HTT and are unique among PATs as they are the only two that have an ankyrin repeat domain, which mediates the interaction between HIP14 and HTT.
View Article and Find Full Text PDFPalmitoylation, the dynamic post-translational addition of the lipid, palmitate, to proteins by Asp-His-His-Cys-containing palmitoyl acyltransferase (PAT) enzymes, modulates protein function and localization and plays a key role in the nervous system. Huntingtin-interacting protein 14 (HIP14), a well-characterized neuronal PAT, has been implicated in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disease associated with motor, psychiatric and cognitive symptoms, caused by a CAG expansion in the huntingtin gene (HTT). Mice deficient for Hip14 expression develop neuropathological and behavioural features similar to HD, and the catalytic activity of HIP14 is impaired in HD mice, most likely due to the reduced interaction of HIP14 with HTT.
View Article and Find Full Text PDFPost-translational modification of proteins by the lipid palmitate is critical for protein localization and function. Palmitoylation is regulated by the opposing enzymes palmitoyl acyltransferases (PATs) and acyl protein thioesterases, which add and remove palmitate from proteins, respectively. Palmitoylation is particularly important for a number of processes including neuronal development and synaptic activity in the central nervous system.
View Article and Find Full Text PDFHuntington disease (HD) is caused by polyglutamine expansion in the huntingtin (HTT) protein. Huntingtin-interacting protein 14 (HIP14), one of 23 DHHC domain-containing palmitoyl acyl transferases (PATs), binds to HTT and robustly palmitoylates HTT at cysteine 214. Mutant HTT exhibits reduced palmitoylation and interaction with HIP14, contributing to the neuronal dysfunction associated with HD.
View Article and Find Full Text PDFHuntington disease (HD) is a neurodegenerative disorder caused by an elongated polyglutamine tract in huntingtin (htt). htt normally undergoes different posttranslational modifications (PTMs), including phosphorylation, SUMOylation, ubiquitination, acetylation, proteolytic cleavage, and palmitoylation. In the presence of the HD mutation, some PTMs are significantly altered and can result in changes in the clinical phenotype.
View Article and Find Full Text PDF