Laminins are essential components of the basement membranes, expressed in a tissue- and cell-specific manner under physiological conditions. During inflammatory circumstances, such as atherosclerosis, alterations in laminin composition within vessels have been observed. Our study aimed to assess the influence of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine abundantly found in atherosclerotic lesions, on endothelial laminin gene expression and the effects of laminin-332 (LN332) on endothelial cells' behavior.
View Article and Find Full Text PDFIn atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs).
View Article and Find Full Text PDFDefective LDL-C clearance and hence its elevation in the circulation is an established risk factor for cardiovascular diseases (CVDs) such as myocardial infarction (MI). A soluble LDL-receptor (sLDL-R) has been detected in human plasma which correlates strongly with circulating LDL-C and classical conditions that promote chronic inflammation. However, the mechanistic interplay between sLDL-R, inflammation, and CVDs remains to be investigated.
View Article and Find Full Text PDFBackground And Aims: Laminins are essential components of the endothelial basement membrane, which predominantly contains LN421 and LN521 isoforms. Regulation of laminin expression under pathophysiological conditions is largely unknown. In this study, we aimed to investigate the role of IL-6 in regulating endothelial laminin profile and characterize the impact of altered laminin composition on the phenotype, inflammatory response, and function of endothelial cells (ECs).
View Article and Find Full Text PDFThe balance between pro- and anti-inflammatory cytokines released by immune and non-immune cells plays a decisive role in the progression of atherosclerosis. Interleukin (IL)-17A has been shown to accelerate atherosclerosis. In this study, we investigated the effect on pro-inflammatory mediators and atherosclerosis development of an Affibody molecule that targets IL17A.
View Article and Find Full Text PDFVascular endothelial cells express glycoprotein 130 (gp130), which is utilized as a signaling receptor by cytokines in the interleukin-6 (IL-6) family. Several IL-6 family cytokines can be found in the circulatory system during physiological or pathological conditions, and may influence endothelial function and response. This study evaluated and compared the cellular and molecular responses induced by IL-6 family cytokines in human endothelial cells.
View Article and Find Full Text PDFThe Caspase activation and recruitment domain 8 (CARD8) protein is a component of innate immunity and overexpression of CARD8 mRNA was previously identified in atherosclerosis. However, very little is known about the regulation of CARD8 in endothelial cells and atherosclerosis. The aim of this study was to investigate CARD8 in the regulation of cytokine and chemokine expression in endothelial cells.
View Article and Find Full Text PDFSprouting angiogenesis is the formation of new capillaries from existing vessels in response to tissue hypoxia due to growth/development, repair/healing, and also chronic inflammation. In this study, we aimed to elucidate the effect of IL-6, a pleiotropic cytokine with both pro-inflammatory and anti-inflammatory functions, in regulating the sprouting angiogenic response of endothelial cells (ECs). We found that activation of IL-6 trans-signaling inhibited the migration, proliferation, and tube formation ability of ECs.
View Article and Find Full Text PDFBackground: Interleukin 6 (IL6) is a multifunctional cytokine produced by various cells, including vascular endothelial cells. IL6 has both pro- and non-/anti-inflammatory functions, and the response to IL6 is dependent on whether it acts via the membrane-bound IL6 receptor (IL6R) (classic signaling) or the soluble form of the receptor (transsignaling). As human endothelial cells produce IL6 and at the same time express IL6R, we hypothesized that IL6 may have autocrine functions.
View Article and Find Full Text PDFThe healthy vascular endothelium constantly releases autacoids which cause an increase of intracellular cyclic nucleotides to tame platelets from inappropriate activation. Elevating cGMP and cAMP, in line with previous reports, cooperated in the inhibition of isolated human platelet intracellular calcium-mobilization, dense granules secretion, and aggregation provoked by thrombin. Further, platelet alpha granules secretion and, most relevant, integrin αβ activation in response to thrombin are shown to be prominently affected by the combined elevation of cGMP and cAMP.
View Article and Find Full Text PDFIntroduction: Platelet aggregation and secretion can be induced by a large number of endogenous activators, such as collagen, adenosine diphosphate (ADP) and epinephrine. Conversely, the blood vessel endothelium constitutively release platelet inhibitors including nitric oxide (NO) and prostacyclin. NO and prostacyclin are also well-known vasodilators and contribute to alterations in local blood flow and systemic blood pressure.
View Article and Find Full Text PDFBackground: IL-6 classic signaling is linked to anti-inflammatory functions while the trans-signaling is associated with pro-inflammatory responses. Classic signaling is induced via membrane-bound IL-6 receptor (IL-6R) whereas trans-signaling requires prior binding of IL-6 to the soluble IL-6R. In both cases, association with the signal transducing gp130 receptor is compulsory.
View Article and Find Full Text PDFCerebral amyloid angiopathy (CAA) is a vascular dysfunction disorder characterized by deposits of amyloid-β (Aβ) in the walls of cerebral vessels. CAA and Aβ deposition in the brain parenchyma contribute to dementia and Alzheimer's disease (AD). We investigated the contribution of platelets, which accumulate at vascular Aβ deposits, to CAA.
View Article and Find Full Text PDFIn spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device.
View Article and Find Full Text PDFBackground: It is important to identify cardiovascular diseases in patients at high risk. To include genetics into routine cardiological patients has therefore been discussed recently. We wanted to evaluate the association between high-molecular weight adiponectin and cardiovascular risk, and secondly in the same population evaluate if specific genotype differences regarding risk could be observed, and thirdly if gender differences could be seen.
View Article and Find Full Text PDFPatients with type 2 diabetes (T2D) are at high risk of developing hypertension and related cardiovascular disease. The renin-angiotensin system (RAS) plays a central role in regulation of blood pressure (BP). Accordingly, each component of this system represents a potential candidate in the etiology of hypertension.
View Article and Find Full Text PDFCigarette smoking is a leading cause of cardiovascular disease. The cardiovascular effects of smoking are probably multifactorial, including effects on platelets. Previous reports investigating the effects of nicotine and tobacco on platelet function are inconsistent.
View Article and Find Full Text PDFBackground: The functional plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism has previously been associated with hypertension. In recent years, central blood pressure, rather than brachial has been argued a better measure of cardiovascular damage and clinical outcome. The aim of this study was to investigate the possible influence of the 4G/5G polymorphism on central arterial blood pressure in a cohort of elderly individuals.
View Article and Find Full Text PDFJ Renin Angiotensin Aldosterone Syst
September 2011
Introduction: A polymorphism in the angiotensin-converting enzyme gene (ACE I/D polymorphism) has been associated with increased risk for cardiovascular disease (CVD). This polymorphism affects the level of circulating ACE, but there is great individual variation, even between those with the same genotype. Few previous studies have investigated the link between circulating ACE and cardiovascular risk.
View Article and Find Full Text PDFNicotine has been shown to induce endothelial dysfunction, which is an early marker of atherosclerosis. Nicotine undergoes extensive metabolism in the liver, forming a number of major and minor metabolites. There are very limited data on the effect of nicotine metabolites on the cardiovascular system.
View Article and Find Full Text PDF