Publications by authors named "Liza Barki Harrington"

Among the main metabolic pathways implicated in cancer cell proliferation are those of cholesterol and fatty acid synthesis, both of which are tightly regulated by sterol regulatory element-binding proteins (SREBPs). SREBPs are activated through specific cleavage by membrane-bound transcription factor protease 1 (MBTPS1), a serine protease that cleaves additional substrates (ATF6, BDNF, CREBs and somatostatin), some of which are also implicated in cell proliferation. The goal of this study was to determine whether MBTPS1 may serve as a master regulator in proliferation of colorectal cancer (CRC).

View Article and Find Full Text PDF

Background And Objectives: The COVID-19 pandemic has led to a growing interest in hospital-at-home programmes, including home transfusion services. We studied whether the pandemic had influenced patients' perception of home transfusions.

Materials And Methods: We conducted a survey among haematology patients who receive transfusions in the hospital day care facility.

View Article and Find Full Text PDF

Social isolation poses a severe mental and physiological burden on humans. Most animal models that investigate this effect are based on prolonged isolation, which does not mimic the milder conditions experienced by people in the real world. We show that in adult male rats, acute social isolation causes social memory loss.

View Article and Find Full Text PDF

Background: One of the main obstacles of providing home-based palliative care to transfusion-dependent hematology patients is the lack of home transfusions services. While healthcare professionals are concerned with safety and cost of home transfusions, the attitude of the patients toward home transfusions are mostly unknown.

Aim: To obtain quantitative data regarding the willingness and concerns of transfusion-dependent patients with hematological diseases toward the option of home transfusions.

View Article and Find Full Text PDF

Accumulating evidence suggests that the cyclooxygenase-2 (COX-2) enzyme has additional catalytic-independent functions. Here we show that COX-2 appears to be cleaved in mouse and human tumors, which led us to hypothesize that COX-2 proteolysis may play a role in cell proliferation. The data presented herein show that a K598R point mutation at the carboxyl-terminus of COX-2 causes the appearance of several COX-2 immunoreactive fragments in nuclear compartments, and significantly enhances cell proliferation.

View Article and Find Full Text PDF

Objective: Statins are a group of medications that reduce cholesterol synthesis by inhibiting the activity of HMG-CoA reductase, a key enzyme in the mevalonate pathway. The clinical use of statins to lower excess cholesterol levels has revolutionized the cardiovascular field and increased the survival of millions, but some patients have adverse side effects. A growing body of data suggests that some of the beneficial and adverse effects of statins, including their anti-inflammatory, anti-tumorigenic, and myopathic activities, are cholesterol-independent.

View Article and Find Full Text PDF

Catalysis of arachidonic acid (AA) by cyclooxygenase-2 (COX-2) gives rise to a single product that serves as a precursor for all prostaglandins, which are central mediators of inflammation. Rapid up-regulation of COX-2 expression in response to pro-inflammatory stimuli is a well-characterized means of generating the large pool of prostaglandins necessary for inflammation. However, an efficient inflammatory process must also terminate rapidly and thus requires cessation of COX-2 enzymatic activity and removal of excess protein from the cell.

View Article and Find Full Text PDF

Heparanase activity is highly implicated in cellular invasion and tumor metastasis, a consequence of cleavage of heparan sulfate and remodeling of the extracellular matrix underlying epithelial and endothelial cells. Heparanase expression is rare in normal epithelia, but is often induced in tumors, associated with increased tumor metastasis and poor prognosis. In addition, heparanase induction promotes tumor growth, but the molecular mechanism that underlines tumor expansion by heparanase is still incompletely understood.

View Article and Find Full Text PDF
Article Synopsis
  • The enzyme COX-2 is crucial in the kidneys for producing angiotensin II (AngII), which then reduces COX-2 levels through the activation of the AT1 receptor.
  • Research shows that the AT1 receptor not only negatively affects COX-2 indirectly but also directly decreases its levels by promoting its degradation via ubiquitination.
  • A specific part of the AT1 receptor's structure is essential for this regulation, suggesting that targeting this mechanism could lead to new treatments for conditions linked to excess COX-2.
View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the generation of prostanoids, and is thus one of the key players in the inflammatory process. Contrary to the constitutively expressed isoform COX-1, the expression of COX-2 is rapidly and transiently upregulated following pathological stimuli but little is known about pathways that mediate its degradation. Here we show that co-expression of COX-2 together with the β1 adrenergic receptor (β1AR) specifically lowers the expression of COX-2 in a dose-dependent manner.

View Article and Find Full Text PDF

The pro-inflammatory enzyme cyclooxygenase-2 (COX-2) is regularly expressed in the hippocampal neurons, but its role in emotional trauma is not known. Here we show that a single acute stress caused by a near-drowning experience results in heightened anxiety-like behavior one month after the trauma. Biochemical analyses of dorsal and ventral hippocampal CA1, CA3 and dentate gyrus revealed decreased ubiquitination and elevated levels of COX-2 in the traumatized animals only in the ventral CA1.

View Article and Find Full Text PDF

While many signals cause upregulation of the pro-inflammatory enzyme cyclooxygenase -2 (COX-2), much less is known about mechanisms that actively downregulate its expression. We have recently shown that the prostaglandin EP1 receptor reduces the expression of COX-2 in a pathway that facilitates its ubiquitination and degradation via the 26S proteasome. Here we show that an elevation of COX-2 intracellular levels causes an increase in the endogenous expression of prostaglandin EP1.

View Article and Find Full Text PDF

The cyclooxygenase (COX) enzyme isoforms COX-1 and COX-2 catalyze the main step in the generation of prostanoids that mediate major physiological functions. Whereas COX-1 is a ubiquitously expressed stable protein, COX-2 is transiently upregulated in many pathologies and is often associated with a poor prognostic outcome. We have recently shown that an interaction of COX-2 with the prostaglandin EP₁ receptor accelerates its degradation via a mechanism that augments its level of ubiquitination.

View Article and Find Full Text PDF

Oxytocin is a nine amino acid neuropeptide that is known to play a critical role in fetal expulsion and breast-feeding, and has been recently implicated in mammalian social behavior. The actions of both central and peripheral oxytocin are mediated through the oxytocin receptor (Oxtr), which is encoded by a single gene. In contrast to the highly conserved expression of oxytocin in specific hypothalamic nuclei, the expression of its receptor in the brain is highly diverse among different mammalian species or even within individuals of the same species.

View Article and Find Full Text PDF

Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition.

View Article and Find Full Text PDF

Chronic infusion of mice with a β2 adrenergic receptor (β2AR) analog was shown to cause long-term DNA damage in a pathway which involves β Arresin-1-mediated activation of Mdm2 and subsequent degradation of the tumor suppressor protein p53. The objective of the present study was to test whether a single acute stress, which manifests long lasting changes in behavior, affects the interaction of Mdm2 with p53, β2AR, and β Arrestin-1 in the dorsal and ventral hippocampal CA1. Adult rats were subject to underwater trauma, a brief forceful submersion under water and tested a month later for behavioral and biochemical changes.

View Article and Find Full Text PDF

The enzyme cyclooxygenase-2 (COX-2) is rapidly and transiently up-regulated by a large variety of signals and implicated in pathologies such as inflammation and tumorigenesis. Although many signals cause COX-2 up-regulation, much less is known about mechanisms that actively down-regulate its expression. Here we show that the G protein-coupled receptor prostaglandin E(1) (EP(1)) reduces the expression of COX-2 in a concentration-dependent manner through a mechanism that does not require receptor activation.

View Article and Find Full Text PDF

The synaptic vesicle cycle encompasses the pre-synaptic events that drive neurotransmission. Influx of calcium leads to the fusion of synaptic vesicles with the plasma membrane and the release of neurotransmitter, closely followed by endocytosis. Vacated release sites are repopulated with vesicles which are then primed for release.

View Article and Find Full Text PDF

We aimed to test whether tyrosine phosphorylation of the NMDA receptor (NMDAR) in the insular cortex is necessary for novel taste learning. We found that in rats, novel taste learning leads to elevated phosphorylation of tyrosine 1472 of the NR2B subunit of the NMDAR and increases the interaction of phosphorylated NR2B with the major postsynaptic scaffold protein PSD-95. Injection of the tyrosine kinase inhibitor genistein directly into the insular cortex of rats before novel taste exposure prevented the increase in NR2B tyrosine phosphorylation and behaviorally attenuated taste-memory formation.

View Article and Find Full Text PDF

The processes underlying long-term memory formation in the neocortex are poorly understood. Using taste learning, we found learning-related induction of PSD-95 in the gustatory cortex, which was temporally restricted, coupled to the learning of a novel, but not familiar, taste and controlled by ERK. Using temporally and spatially restricted RNA interference knockdown of PSD-95 in vivo, we found that PSD-95 induction is necessary for learning novel tastes, but not for the recollection of familiar ones.

View Article and Find Full Text PDF

Initially thought to play a role only in G-protein-coupled receptor desensitization, beta-arrestins are ascribed with new roles such as scaffolding and signaling proteins by their own right. This review explores the many functions of beta-arrestins, with an emphasis on their recently identified role as regulators of receptor signaling.

View Article and Find Full Text PDF

Deleterious effects on the heart from chronic stimulation of beta-adrenergic receptors (betaARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby beta-arrestins mediate beta1AR signaling to the EGFR. This beta-arrestin-dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein-coupled receptor kinases 5 and 6.

View Article and Find Full Text PDF

Prostaglandins are known to transduce their signals via 7 transmembrane prostanoid receptors, which typically signal through coupling to G proteins and downstream second messenger molecules and protein kinase activation. Recently we have shown that cyclic nucleotides affect prostaglandins binding to bovine aortic endothelial cells independent of protein kinases. Here we show that incubation of bovine aortic endothelial cells with permeable analogs of cAMP or cGMP leads to a rapid and reversible reduction in PGE(2) binding to the cells.

View Article and Find Full Text PDF