The intensive care unit (ICU) environment is designed for the care of acutely ill patients, with lighting conditions reflecting the needs of the busy clinical setting. Earlier ICU studies suggested that daytime and nighttime light levels were misaligned with those required for circadian rhythm entrainment, which can impact patient sleep-wake cycles and recovery from critical illness. In this investigation in San Diego, California, a coastal US city with over 260 days of sunshine annually, we performed a detailed evaluation of light levels in a contemporary academic medical-surgical ICU constructed in 2016, which features modern lighting and floor-to-ceiling windows in each of the 24 rooms.
View Article and Find Full Text PDFContact (Thousand Oaks)
February 2024
The lipid phosphatidylinositol 4-phosphate (PI4P) plays a master regulatory role at Golgi membranes, orchestrating membrane budding, non-vesicular lipid transport and membrane organization. It follows that harmonious Golgi function requires strictly maintained PI4P homeostasis. One of the most abundant PI4P effector proteins is the oxysterol binding protein (OSBP), a lipid transfer protein that exchanges trans-Golgi PI4P for ER cholesterol.
View Article and Find Full Text PDFContact (Thousand Oaks)
February 2024
Oxysterol-binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient.
View Article and Find Full Text PDFThe lipid phosphatidylinositol 4-phosphate (PI4P) plays a master regulatory role at Golgi membranes, orchestrating membrane budding, non-vesicular lipid transport and membrane organization. It follows that harmonious Golgi function requires strictly maintained PI4P homeostasis. One of the most abundant PI4P effector proteins is the oxysterol binding protein (OSBP), a lipid transfer protein that exchanges trans Golgi PI4P for ER cholesterol.
View Article and Find Full Text PDFOxysterol binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient.
View Article and Find Full Text PDF