The sluggish kinetics of oxygen reduction reaction (ORR) and unsatisfactory durability of Pt-based catalysts are severely hindering the commercialization of proton-exchange-membrane fuel cells (PEMFCs). In this work, the lattice compressive strain of Pt-skins imposed by Pt-based intermetallic cores is tailored for highly effective ORR through the confinement effect of the activated nitrogen-doped porous carbon (a-NPC). The modulated pores of a-NPC not only promote Pt-based intermetallics with ultrasmall size (average size of <4 nm), but also efficiently stabilizes intermetallic nanoparticles and sufficient exposure of active sites during the ORR process.
View Article and Find Full Text PDFFor the first time, hyperpolarized (HP) Xe NMR measurements are utilized to explore porous structures of porous starch (PS) successfully. Some micropores resided inside the mesopore walls of PS were detected by variable temperature (VT) HP Xe NMR, and the pore sizes of micropores were also estimated using the empirical relationship. Furthermore, the interconnectivity of pores was investigated in detail by two-dimensional (2D) exchange spectroscopy (EXSY).
View Article and Find Full Text PDFFor the first time, Xe NMR measurements are utilized to explore adsorption mechanism between porous structures of mesoporous corn starch and Palladium. Dithiocarbamate modified mesoporous corn starch (donated as DTC MS) was synthesized and applied for adsorption of Pd (II) ion successfully. The structural characterization of DTC MS was carried out by FT-IR, C solid-state NMR and XRD, respectively.
View Article and Find Full Text PDFModified porous starch (PS), by introducing octenyl succinic anhydride (OSA) moieties, was synthesized successfully, which was applied as an emulsion of β-carotene for the first time. The pores and channels within porous starch provided more possibilities for OSA to modify starch. The ester linkage of OSA modified PS with different degrees of substitution (DS) were confirmed by both C solid-state NMR and Fourier transform-infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFCancer is mainly caused by somatic genome alterations (SGAs). Precision oncology involves identifying and targeting tumor-specific aberrations resulting from causative SGAs. We developed a novel tumor-specific computational framework that finds the likely causative SGAs in an individual tumor and estimates their impact on oncogenic processes, which suggests the disease mechanisms that are acting in that tumor.
View Article and Find Full Text PDF