Publications by authors named "Liyuan Ran"

Background: The global incidence of obesity continues to rise, which increases the prevalence of metabolic diseases. We previously demonstrated the beneficial effect of adipose-specific growth hormone receptor (Ghr) knockout (KO) on metabolic parameters in male mice exposed to high fat diet. Although the effect of the growth hormone (GH) axis on lipid metabolism has been well studied, sexual dimorphism has not been considered.

View Article and Find Full Text PDF

Growth hormone (GH) and gut microbiota are key regulators of metabolism and have been linked to the development and treatment of obesity. Although variations in GH levels are associated with changes in gut microbiota composition, the specific effects of GH on gut microbiota and its role in obesity remain unclear. This study explored the effects of various GH doses (0.

View Article and Find Full Text PDF

Oxysterol-binding protein (OSBP) mediates lipid exchange between organelles at membrane contact sites, thereby regulating lipid dynamics and homeostasis. How OSBP's lipid transfer function impacts health and disease remain to be elucidated. In this review, we first summarize the structural characteristics and lipid transport functions of OSBP, and then focus on recent progresses linking OSBP with fatty liver disease, diabetes, lysosome-related diseases, cancer and viral infections, with the aim of discovering novel therapeutic strategies for common human diseases.

View Article and Find Full Text PDF

Both growth hormone (GH) and gut microbiota play significant roles in diverse physiological processes, but the crosstalk between them is poorly understood. Despite the regulation of GH by gut microbiota, study on GH's influence on gut microbiota is limited, especially on the impacts of tissue specific GH signaling and their feedback effects on the host. In this study, we profiled gut microbiota and metabolome in tissue-specific GHR knockout mice in the liver (LKO) and adipose tissue (AKO).

View Article and Find Full Text PDF
Article Synopsis
  • Omega-3 PUFAs from fish oil are known to help prevent obesity by enhancing lipid metabolism and regulating gut health, but microalgae oil is emerging as a sustainable alternative due to declining fish stocks.
  • A study comparing the effects of microalgae oil (SMO), commercial fish oil (FO), and the weight-loss drug Orlistat (OL) on obesity in mice found that SMO was as effective as FO and OL for weight loss and acted more quickly.
  • SMO uniquely promotes beneficial gut bacteria, improves lipid metabolism, and restores gut health without affecting bacterial diversity, making it a promising dietary supplement for obesity management.
View Article and Find Full Text PDF

Serine metabolism is reportedly involved in immune cell functions, but whether and how serine metabolism regulates macrophage polarization remain largely unknown. Here, we show that suppressing serine metabolism, either by inhibiting the activity of the key enzyme phosphoglycerate dehydrogenase in the serine biosynthesis pathway or by exogenous serine and glycine restriction, robustly enhances the polarization of interferon-γ-activated macrophages (M(IFN-γ)) but suppresses that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, serine metabolism deficiency increases the expression of IGF1 by reducing the promoter abundance of S-adenosyl methionine-dependent histone H3 lysine 27 trimethylation.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is closely associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), which are all complex metabolic disorders. Selenoprotein S (SelS) is an endoplasmic reticulum (ER) resident selenoprotein involved in regulating ER stress and has been found to participate in the occurrence and development of IR and T2DM. However, the potential role and mechanism of SelS in NAFLD remains unclear.

View Article and Find Full Text PDF

Apostichopus japonicus is a useful model for studying organ regeneration, and the gut microbiota is important for host organ regeneration. However, the reconstruction process and the mechanisms of gut microbiota assembly during gut regeneration in sea cucumbers have not been well studied. In the present study, gut regeneration was induced (via evisceration) in A.

View Article and Find Full Text PDF

The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese mouse model of type 2 diabete mellitus (MKR) mouse type 2 diabetes mellitus (T2DM) models.

View Article and Find Full Text PDF

Background & Aims: Nonalcoholic fatty liver disease (NAFLD) is becoming a severe liver disorder worldwide. Autophagy plays a critical role in liver steatosis. However, the role of autophagy in NAFLD remains exclusive and under debate.

View Article and Find Full Text PDF

Growth hormone (GH) binds to its receptor (growth hormone receptor [GHR]) to exert its pleiotropic effects on growth and metabolism. Disrupted GH/GHR actions not only fail growth but also are involved in many metabolic disorders, as shown in murine models with global or tissue-specific Ghr deficiency and clinical observations. Here we constructed an adipose-specific Ghr knockout mouse model Ad-GHRKO and studied the metabolic adaptability of the mice when stressed by high-fat diet (HFD) or cold.

View Article and Find Full Text PDF

Astragalus polysaccharide (APS) is the main component of Astragalus membranaceus, an anti-diabetic herb being used for thousands of years in Traditional Chinese medicine (TCM). In this study, we aimed to evaluate the impact of APS on hepatic insulin signaling, autophagy and ER stress response in high-fat-diet (HFD)-induced insulin resistance (IR) mice. APS was intra-gastrically administrated and metformin was used as a control medicine.

View Article and Find Full Text PDF

Objective: Dietary n-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acids (EPA) and docosahexaenoic acid (DHA), are proved to be effective in obesity reduction. Microalgal oil (MO) is an important alternative source of n-3 PUFAs that effectively alleviates obesity. The aim of the present study was to explore the anti-obesity effects of microalgal oil from Schizochytrium sp.

View Article and Find Full Text PDF

Bacterial collagenolytic proteases are important because of their essential role in global collagen degradation and because of their virulence in some human bacterial infections. Bacterial collagenolytic proteases include some metalloproteases of the M9 family from Clostridium or Vibrio strains, some serine proteases distributed in the S1, S8, and S53 families, and members of the U32 family. In recent years, there has been remarkable progress in discovering new bacterial collagenolytic proteases and in investigating the collagen-degrading mechanisms of bacterial collagenolytic proteases.

View Article and Find Full Text PDF

The protease myroilysin is the most abundant protease secreted by marine sedimental bacterium Myroides profundi D25. As a novel elastase of the M12 family, myroilysin has high elastin-degrading activity and strong collagen-swelling ability, suggesting its promising biotechnological potential. Because myroilysin cannot be maturely expressed in Escherichia coli, it is important to be able to improve the production of myroilysin in the wild strain D25.

View Article and Find Full Text PDF

Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive.

View Article and Find Full Text PDF

D-Spacing is the most significant topographic feature of type I collagen fibril, and it is important for our understanding of the structure and function in collagens. Traditionally, the D-spacing of type I collagen fibril was shown to have a singular value of 67 nm, but recent works indicated that the D-spacing values have a large distribution of up to 10 nm when measured by atomic force microscopy. We found that this large distribution of D-spacing values mainly resulted from image drift during measurement.

View Article and Find Full Text PDF

Background: Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt to the deep-sea environment due to the lack of a genetic manipulation system. The aim of this study is to develop a genetic system in the deep-sea sedimentary bacterium Pseudoalteromonas sp.

View Article and Find Full Text PDF

Collagen is an insoluble protein that widely distributes in the extracellular matrix of marine animals. Collagen degradation is an important step in the marine nitrogen cycle. However, the mechanism of marine collagen degradation is still largely unknown.

View Article and Find Full Text PDF

A number of proteases in the subtilisin family derived from environmental or pathogenic microorganisms have been reported to be collagenolytic serine proteases. However, their collagen degradation mechanisms remain unclear. Here, the degradation mechanism of type I collagen fibres by the S8 collagenolytic protease MCP-01, from Pseudoalteromonas sp.

View Article and Find Full Text PDF