A single-step chemical vapor deposition method is utilized to prepare a novel electrode structure composed of coaxial Zn2GeO4@carbon nanowires directly grown on a Cu foil current-collector (ZGO@C/Cu), and the obtained ZGO@C/Cu hybrid electrode is employed as additive-free anode in lithium ion battery studies. The ZGO@C/Cu electrode exhibits a high reversible capacity of 1162 mA h g(-1) between 0.01 and 3.
View Article and Find Full Text PDFIn this work we report a physical deposition-based, one-step quantum dot (QD) synthesis and assembly on ternary metal oxide nanowires for photovoltaic applications. Typical solution-based synthesis of colloidal QDs for QD sensitized solar cells involves nontrivial ligand exchange processing and toxic wet chemicals, and the effect of the ligands on carrier transport has not been fully understood. In this research using pulsed laser deposition, CdSe QDs were coated on Zn(2)SnO(4) nanowires without ligand molecules, and the coverage could be controlled by adjusting the laser fluence.
View Article and Find Full Text PDFIn this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined.
View Article and Find Full Text PDF