The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models.
View Article and Find Full Text PDFIn response to DNA double-strand breaks (DSBs), repair proteins are recruited to the damaged sites. Ubiquitin signaling plays a critical role in coordinating protein recruitment during the DNA damage response. Here, we find that the microRNA biogenesis factor DGCR8 promotes tumor resistance to X-ray radiation independently of its Drosha-binding ability.
View Article and Find Full Text PDFSNAI1, an epithelial-mesenchymal transition (EMT)-inducing transcription factor, promotes tumor metastasis and resistance to apoptosis and chemotherapy. SNAI1 protein levels are tightly regulated by proteolytic ubiquitination. Here, we identified USP37 as a SNAI1 deubiquitinase that removes the polyubiquitination chain from SNAI1 and prevents its proteasomal degradation.
View Article and Find Full Text PDFDysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCF E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1.
View Article and Find Full Text PDFAlthough EZH2 enzymatic inhibitors have shown antitumor effects in EZH2-mutated lymphoma and ARID1A-mutated ovarian cancer, many cancers do not respond because EZH2 can promote cancer independently of its histone methyltransferase activity. Here we identify ZRANB1 as the EZH2 deubiquitinase. ZRANB1 binds, deubiquitinates, and stabilizes EZH2.
View Article and Find Full Text PDFZEB1 is a transcription factor that induces epithelial-mesenchymal transition, tumor metastasis, and therapy resistance. ZEB1 protein is subject to ubiquitination and degradation, but the mechanism by which ZEB1 is stabilized in cells remains unclear. By screening a human deubiquitinase library, we identified USP51 as a deubiquitinase that binds, deubiquitinates, and stabilizes ZEB1.
View Article and Find Full Text PDFCyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions.
View Article and Find Full Text PDFCyclin Y-like 1 (Ccnyl1) is a newly-identified member of the cyclin family and is highly similar in protein sequences to Cyclin Y (Ccny). However, the function of Ccnyl1 is poorly characterized in any organism. Here we found that Ccnyl1 was most abundantly expressed in the testis of mice and was about seven times higher than the level of Ccny.
View Article and Find Full Text PDFA new member of the cyclin family cyclin Y (CCNY) is involved in the regulation of various physiological processes. In this study, the role of CCNY in energy metabolism was characterized. We found that compared with wild-type (WT) mice, Ccny knockout (KO) mice had both lower body weight and lower fat content.
View Article and Find Full Text PDFCyclin Y, a membrane associated cyclin, is capable of binding and activating CDK14. Here we report that human cyclin Y (CCNY) is a phosphoprotein in vivo and that phosphorylation of CCNY by CDK14 triggers its ubiquitination and degradation. Inactivation of either CDK14 or Cul1 results in accumulation of CCNY.
View Article and Find Full Text PDFMammalian eIF3 is composed of 13 subunits and is the largest eukaryotic initiation factor. eIF3 plays a key role in protein biosynthesis. However, it is not fully understood how different subunits contribute to the structural integrity and function of the eIF3 complex.
View Article and Find Full Text PDFThe Gβγ heterodimer is an important signal transducer. Gβ, however, is prone to misfolding due to its requirement for Gγ and chaperones for proper folding. How cells dispose of misfolded Gβ (mfGβ) is not clear.
View Article and Find Full Text PDF