Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth's energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth's climate system. In 2022, the world's oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum.
View Article and Find Full Text PDFThe increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content (OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year's record value by 14 ± 11 ZJ (1 zetta J = 10 J) using the IAP/CAS dataset and by 16 ± 10 ZJ using NCEI/NOAA dataset.
View Article and Find Full Text PDFA series of novel bis-pyrazole/pyridine complexes, [Zn(2)(HL(1))(2)(μ(2)-SO(4))](2)·EtOH·H(2)O (1), [Co(2)(HL(1))(2)(μ(2)-SO(4))](2)·2DMF·6H(2)O (2), [Zn(4)(HL(1))(4)(μ(4)-SO(4))][OH](2) (3), [Zn(2)(HL(2))(2)(μ(2)-SO(4))]·2H(2)O (4), [Zn(H(2)L(2))(H(2)O)(2)](SO(4))·0.87H(2)O (5) (H(2)L(1) = 2,6-di-(5-phenyl-1H-pyrazol-3-yl)pyridine, H(2)L(2) = 2,6-di-(5-methyl-1H-pyrazol-3-yl)pyridine), were synthesized hydrothermally from the self-assembly of Zn(II) or Co(II) with different types of bipyrazolyl/pyridine derivative ligands. All the complexes were characterized by elemental analysis, IR and UV-vis spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction.
View Article and Find Full Text PDF