Publications by authors named "Liyin Chen"

Transforming spent coffee grounds and tea residues into valuable hierarchical porous materials presents a sustainable solution for environmental remediation due to the low cost, extensive availability, and versatile functionalized interface. Here, we systematically investigated tea polyphenol-mediated morphological transformation of spent coffee grounds to the synthesis of three-dimensional (3D) mesoporous metal-organic framework (MOF)-derived nanoarchitectured carbon composites. We adopted the sustainable cost-effective tea-coffee derivative to remove typical marine micropollutants, such as antibiotic wastewater, radioactive pollutants, and microplastics.

View Article and Find Full Text PDF

Organic thin-film transistors (OTFTs), benefiting from a low-temperature process (≤120 °C), offer a promising approach for the monolithic integration of MicroLED structures through organic-last integration. Previous research has demonstrated that small-molecule/polymer binder-based organic semiconductor deposition, utilizing the vertical phase separation mechanism, can achieve good device uniformity while preserving high field-effect carrier mobility. However, the stability of OTFTs under light exposure at the device level remains underexplored.

View Article and Find Full Text PDF

While luminescent stimuli-responsive materials (LSRMs) have become one of the most sought-after materials owing to their potential in optoelectronic applications, the use of earth-scarce lanthanides remains a crucial problem to be solved for further development. In this work, two manganese-based LSRMs, ()-(+)-1-phenylethylammonium manganese bromide, (R-PEA)MnBr, and ()-(-)-1-phenylethylammonium manganese bromide, (S-PEA)MnBr, are successfully demonstrated. Both (R-PEA)MnBr and (S-PEA)MnBr show a kinetically stable red-emissive amorphous state and a thermodynamically stable green-emissive crystalline state at room temperature, where the fully reversible transition can be done through melt-quenching and annealing processes.

View Article and Find Full Text PDF

Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. We present an experimental method for reliably recovering complete viral genomes from complex environmental samples.

View Article and Find Full Text PDF

Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. This work presents a method for reliably recovering complete viral genomes from complex environmental samples.

View Article and Find Full Text PDF

We demonstrate semipolar (20-21) micro-LED-based high-bandwidth WLEDs utilizing perovskite QDs and organic emitters in color-conversion films. The WLEDs exhibit a bandwidth in excess of 1 GHz and a CCT of 6141 K, making these devices suitable for visible light communication and lighting applications.

View Article and Find Full Text PDF

Although vacuum-deposited metal halide perovskite light-emitting diodes (PeLEDs) have great promise for use in large-area high-color-gamut displays, the efficiency of vacuum-sublimed PeLEDs currently lags that of solution-processed counterparts. In this study, highly efficient vacuum-deposited PeLEDs are prepared through a process of optimizing the stoichiometric ratio of the sublimed precursors under high vacuum and incorporating ultrathin under- and upper-layers for the perovskite emission layer (EML). In contrast to the situation in most vacuum-deposited organic light-emitting devices, the properties of these perovskite EMLs are highly influenced by the presence and nature of the upper- and presublimed materials, thereby allowing us to enhance the performance of the resulting devices.

View Article and Find Full Text PDF

The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K.

View Article and Find Full Text PDF

Toxicity assessment is a major problem in pharmaceutical candidates and industry chemicals development. However, due to the lack of practical analytical methods for DNA adduct analysis, the safety evaluation of drug and industry chemicals was severely limited. Here, we develop a DNAzyme-based method to detect DNA adduct damage for toxicity assessment of drugs and chemicals.

View Article and Find Full Text PDF

Simple, rapid and sensitive analysis of drug-derived pollutants is critically valuable for environmental monitoring. Here, taking acetaminophen, hydroquinone and catechol as a study example, a sensor based on an ITO/APTES/r-GO@Au electrode was developed for separate and simultaneous determination of phenolic pollutants. ITO electrodes that are modified with 3-aminopropyltriethoxysilane (APTES), graphene (GO) and Au nanoparticles (Au NPs) can significantly enhance the electronic transport of phenolic pollutants at the electrode surface.

View Article and Find Full Text PDF

Perovskite materials prepared in the form of solution-processed nanocrystals and used in top-down fabrication techniques are very attractive to develop low-cost and high-quality integrated optoelectronic circuits. Particularly, integrated miniaturized coherent light sources that can be connected to light-guiding structures on a chip are highly desired. To control light propagating on a small footprint with low-loss optical modes, long-range surface plasmon polariton (LRSPP) waveguides are employed.

View Article and Find Full Text PDF

Environmental pollution caused by aromatic compounds such as catechol (Cat) has become a major issue for human health. However, there is no simple, rapid, and low-cost method for on-site monitoring of Cat. Here, based on ECL quenching mechanism, we develop a simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor for on-site monitoring of Cat.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 is the virus causing the COVID-19 pandemic, which interacts with the ACE2 receptor in human cells through its spike protein.
  • Patients with COVID-19 have higher levels of antibodies against ACE2, correlating with the severity of the disease; these antibodies seem to be produced in response to the virus's S1-RBD.
  • The study identified two monoclonal antibodies (mAbs 127 and 150) that can bind to both ACE2 and S1-RBD, revealing that these antibodies recognize specific regions of S1-RBD and that their binding to ACE2 depends on its native conformation.
View Article and Find Full Text PDF

In this work, we proposed a rapid and easy check of the drinking water pollution level due to bacteria growth by semiconductor gas sensor. Highly sensitive vertical channel organic ammonia gas sensor was used to detect the gases emitted from the polluted water, and then determined effective ammonia concentration according to its response. Residues from meat of fish, shrimp, and fruits were mashed and added to the clean water.

View Article and Find Full Text PDF

The solar cell has a poor spectral response in the UV region, which affects its power conversion efficiency (PCE). The utilization of a luminescent downshifting (LDS) layer has been suggested to improve the spectral response of the photovoltaics in the short wavelength region through photoluminescence (PL) conversion and antireflection effects, which then enhance the PCE of the solar cell. Recently, colloidal quantum dots (CQDs) or perovskite quantum dots (PQDs) have been gaining prime importance as an LDS material due to their eminent optical characteristics, such as their wide absorption band, adjustable visible emission, short PL lifetime, and near-unity quantum yields.

View Article and Find Full Text PDF

In this research work, the gas sensing properties of halogenated chloroaluminum phthalocyanine (ClAlPc) thin films were studied at room temperature. We fabricated an air-stable ClAlPc gas sensor based on a vertical organic diode (VOD) with a porous top electrode by the solution process method. The surface morphology of the solution-processed ClAlPc thin film was examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

A fine cylindrical chemical sensor tip is developed with optical fiber in the core, surrounded by a transparent cylinder of photopolymer Norland Optical Adhesive 61 (NOA 61), and covered by a polymer hydrogel mixed with sensing molecules. The overall diameter is as small as 1.5 mm.

View Article and Find Full Text PDF
Article Synopsis
  • A violet laser diode (VLD) generates white light by using phosphorous diffuser plates, achieving various color rendering indices (CRIs) based on different materials.
  • When using a YAG:Ce diffuser, the light has a daylight-like temperature of 5068K with a CRI of 65 and a data rate of 4.4 Gbit/s.
  • In contrast, a LuAG:Ce/CASN:Eu diffuser provides a warm white source at 2700K with a higher CRI of 87.9 but at a lower data rate of 2.4 Gbit/s, while optimizing the phosphor thickness can improve both the CRI and maintain a high data rate.
View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al.

View Article and Find Full Text PDF

In this paper, Lu3Al5O12:Ce3+ and CaAlSiN3: Eu2+ co-doped glass are presented as color conversion materials for white light-emitting diodes (WLEDs). Through adjusting the thickness of the glass phosphors, the chromaticity and CCT of the WLEDs follows the Planckian locus well. The WLEDs show CCT ranging from ~4000K to ~7000K with high CRI ranging from 83 to 90 due to the wide emission spectrum from the proposed glass phosphors.

View Article and Find Full Text PDF

Background: Although left ventricular (LV) global systolic longitudinal strain (GLS) reliably and accurately assesses LV systolic function and is also a powerful prognostic predictor, the importance and prognostic value of GLS in end-stage renal disease patients receiving maintenance peritoneal dialysis (PD) remain unclear. This study sought to determine the prognostic value of GLS in chronic PD patients.

Methods: This prospective study collected clinical and echocardiographic data from 106 stable PD patients (50.

View Article and Find Full Text PDF

New broadband glass phosphors with excellent thermal stability were proposed and experimentally demonstrated for white light-emitting-diodes (WLEDs). The novel glass phosphors were realized through dispersing multiple phosphors into SiO₂ based glass (SiO₂-Na₂O-Al₂O₃-CaO) at 680°C. Y₃Al₅O₁₂:Ce³⁺ (YAG), Lu₃Al₅O₁₂:Ce³⁺ (LuAG), and CaAlSiN₃: Eu²⁺ (nitride) phosphor crystals were chosen respectively as the yellow, green, and red emitters of the glass phosphors.

View Article and Find Full Text PDF

Three new biflavonoids, wikstaiwanones A-C (1-3), along with four known compounds (4-7) were isolated from the stems of Wikstroemia taiwanensis (Thymelaeaceae). Their structures were elucidated by spectroscopic analysis. Compounds 4 and 5 showed antitubercular activity against Mycobacterium tuberculosis with MIC values of 15 μg/mL, respectively.

View Article and Find Full Text PDF

In an aim to harvest UV-near-visible (360-440 nm) photons as well as to increase the morphology in the bulk heterojunction solar cells, we report herein the strategic design, synthesis, and characterization of a novel excited-state intramolecular proton-transfer dye, 3-hydroxy-2-(5-(5-(5-(3-hydroxy-4-oxo-4H-chromen-2-yl)thiophen-2-yl)thiophen-2-yl)thiophen-2-yl)-4H-chromen-4-one (FT), which bears two key functional groups, namely 3-hydroxychromone chromophore and trithiophene backbone and is then exploited into the blends of regioregular poly(3-hexylthiophene) (RR-P3HT) and phenyl-C(61)-butyric acid methyl ester (PCBM). FT acts as an excellent UV-near visible absorber, which then undergoes excited-state intramolecular proton transfer, giving rise to an orange-red proton-transfer emission that was reabsorbed by P3HT via a Forster type of energy transfer. Introduction of FT to P3HT/PCBM blend films also improves the morphology of phase separated structure, in particular, enhances the interaction of P3HT chains and the hole mobility.

View Article and Find Full Text PDF

The photophysical and electronic properties of dibenzo[ g, p]chrysenes bearing electron-rich and -deficient substituents vary markedly with these substituents. The chemistry of the first liquid-crystalline dibenzo[ g, p]chrysene is also described.

View Article and Find Full Text PDF