Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore.
View Article and Find Full Text PDFCiprofloxacin (CIP), a quinolone antibiotic, was rapidly and sensitively detected by integrating the molecularly imprinted polymer (MIP) with an ultra-sensitive electrochemiluminescence (ECL) method. g-CN, a typical polymer semiconductor, exhibited outstanding ECL efficiency and excellent ECL stability after combining with an iron-based metal-organic framework (MIL-101). Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the composites of MIL-101-g-CN modified glassy carbon electrode (GCE).
View Article and Find Full Text PDFTrilobatin is a flavonoid that has wide application prospects due to its various pharmacological effects, such as anti-inflammation and anti-oxidation. In this work, a novel electrochemical sensor based on gold nanobipyramids (AuNBs) and L-cysteine (L-cys) was constructed for the sensitive and selective determination of trilobatin. The AuNBs, which were prepared by a seed-mediated growth method, had large specific surface areas and excellent electrical conductivity.
View Article and Find Full Text PDFHerein, a novel molecular imprinting polypyrrole electrochemical sensor was fabricated based on a zirconia and carbon core-shell structure (ZrO@C) and a nitrogen-doped graphene (NPG) modified glassy carbon electrode (GCE) for ultrasensitive recognition of dopamine (DA). The NPG was prepared by a sacrificial-template-assisted pyrolysis method and ZrO@C was synthesized annealing treatment of a zirconium-based metal-organic framework (UiO-66). A convenient electropolymerization method was used to prepare the pyrrole (Py) conductive molecularly imprinted polymer (MIP) in the presence of DA.
View Article and Find Full Text PDF