Publications by authors named "Liyang Mao"

Soft machines respond to external magnetic stimuli with targeted shape changes and motions due to anisotropic magnetization, showing great potential in biomimetic applications. However, mimicking biological functionalities, particularly the complex hollow structures of organs and their dynamic behaviors, remains challenging. Here, we develop a printing method based on three-dimensional uniform magnetic field-assisted stereolithography to fabricate thin-walled soft machines with internal cavities and programmable magnetization.

View Article and Find Full Text PDF

Millimeter-scale soft continuum robots offer safety and adaptability in transluminal procedures due to their passive compliance, but this feature necessitates interactions with surrounding lumina, leading to potential medical risks and restricted mobility. Here, we introduce a millimeter-scale continuum robot, enabling apical extension while maintaining structural stability. Utilizing phase transition components, the robot executes cycles of tip-based elongation, steered accurately through programmable magnetic fields.

View Article and Find Full Text PDF

Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR's scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (MRA) system.

View Article and Find Full Text PDF