Bioactive compounds in medicinal plants are more susceptible to preventing oxidative stress. Encapsulation of herbal extracts has empowered the properties and characteristics of bioactive compounds. Nanoencapsulation allows the enhancement of the stability of extracts and targeted drug delivery.
View Article and Find Full Text PDFAim: This study aimed to prepare, characterise, and evaluate the antidiabetic activity of (L.) extracts encapsulated alginate nanoparticles.
Methods: Alginate nanoparticles were prepared using the ionic gelation method and characterised by encapsulation efficiency %w/w, loading capacity %w/w, particle size analysis, zeta potential, Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM).
J Food Sci
December 2023
Nanoencapsulated bael fruit (Aegle marmelos L. Correa (Family: Rutaceae)) extracts reveal novel prospects in the development of dietary supplements with improved biological activities in the field of the food industry. The main objectives of this study were to prepare and characterize aqueous, ethanol, 50% ethanol, and 50% acetone extracts of bael fruit encapsulated alginate nanoparticles and investigate the effect of encapsulation on in vitro release of polyphenols, antidiabetic, antioxidant, and anti-inflammatory activities, and their stability.
View Article and Find Full Text PDF