Accumulating evidence shows a causative role for the bone marrow (BM) in the genesis and progression of pulmonary hypertension (PH). Engraftment of BM hematopoietic stem cells from PH patients to mice reproduces the cardiopulmonary pathology of PH. However, it is unknown whether healthy BM can prevent the development of right heart disease.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is an obstructive disease of the precapillary pulmonary arteries. Schistosomiasis-associated PAH shares altered vascular TGF-β signalling with idiopathic, heritable and autoimmune-associated etiologies; moreover, TGF-β blockade can prevent experimental pulmonary hypertension (PH) in pre-clinical models. TGF-β is regulated at the level of activation, but how TGF-β is activated in this disease is unknown.
View Article and Find Full Text PDFAm J Respir Crit Care Med
October 2015
Am J Physiol Lung Cell Mol Physiol
September 2015
In severe pulmonary hypertension (SPH), prior studies have shown an increase in right ventricle (RV) uptake of glucose, but it is unclear whether there is a change in the relative utilization of fatty acids. We hypothesized that in the RV in SPH, as in left ventricular (LV) failure, there is altered substrate utilization, with increased glucose uptake and decreased fatty acid uptake. SPH was induced in rats by treatment with the VEGF receptor inhibitor SU5416 and 3 wk of hypoxia (10% FiO2 ), followed by an additional 4 wk of normoxia (SU-Hx group).
View Article and Find Full Text PDFThere is significant evidence that Th2 (T helper 2)-mediated inflammation supports the pathogenesis of both human and experimental animal models of pulmonary hypertension (PH). A key immune regulator is vascular endothelial growth factor (VEGF), which is produced by Th2 inflammation and can itself contribute to Th2 pulmonary responses. In this study, we interrogated the role of VEGF signaling in a murine model of schistosomiasis-induced PH with a phenotype of significant intrapulmonary Th2 inflammation, vascular remodeling, and elevated right ventricular pressures.
View Article and Find Full Text PDFBackground: The pathogenic mechanisms underlying pulmonary arterial hypertension resulting from schistosomiasis, one of the most common causes of pulmonary hypertension worldwide, remain unknown. We hypothesized that transforming growth factor-β (TGF-β) signaling as a consequence of Th2 inflammation is critical for the pathogenesis of this disease.
Methods And Results: Mice sensitized and subsequently challenged with Schistosoma mansoni eggs developed pulmonary hypertension associated with an increase in right ventricular systolic pressure, thickening of the pulmonary artery media, and right ventricular hypertrophy.
Am J Respir Cell Mol Biol
December 2013
Schistosomiasis is one of the most common causes of pulmonary arterial hypertension worldwide, but the pathogenic mechanism by which the host inflammatory response contributes to vascular remodeling is unknown. We sought to identify signaling pathways that play protective or pathogenic roles in experimental Schistosoma-induced pulmonary vascular disease via whole-lung transcriptome analysis. Wild-type mice were experimentally exposed to Schistosoma mansoni ova by intraperitoneal sensitization followed by tail-vein augmentation, and the phenotype was assessed by right ventricular catheterization and tissue histology, as well as RNA and protein analysis.
View Article and Find Full Text PDF