Publications by authors named "Liya Ge"

Paper-based microfluidics combined with potentiometric measurement has emerged as an attractive approach for detecting various chemical ionic moieties. Detection of heavy metal ions, using paper substrates as solution sampling and delivery systems remains challenging despite efforts to introduce several physico-chemical paper substrate modifications to stop adsorption of ions onto the paper substrates. This study quantitatively investigates the adsorption of heavy metal ions on the paper substrates during paper-based potentiometric measurements and explains the super-Nernstian response of potentiometric sensors through local depletion of heavy metal ions from the solution.

View Article and Find Full Text PDF

In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable.

View Article and Find Full Text PDF

Colorimetric sensors have attracted considerable attention in many sensing applications because of their specificity, high sensitivity, cost-effectiveness, ease of use, rapid analysis, simplicity of operation, and clear visibility to the naked eye [...

View Article and Find Full Text PDF

The greatest challenge for the agriculture sector in the twenty-first century is to increase agricultural production to feed the burgeoning global population while maintaining soil health and the integrity of the agroecosystem. Currently, the application of biochar is widely implemented as an effective means for boosting sustainable agriculture while having a negligible influence on ecosystems and the environment. In comparison to traditional biochar, nano-biochar (nano-BC) boasts enhanced specific surface area, adsorption capacity, and mobility properties within soil, allowing it to promote soil properties, crop growth, and environmental remediation.

View Article and Find Full Text PDF

As an important farmed fish, tilapia has poor tolerance to low-temperatures. At the same time, different tilapia strains have apparent differences in low-temperature tolerance. In this study, using the iTRAQ method, the phosphorylated proteomics of two tilapia strains ( and ) with different tolerances to low-temperature stress were quantitatively and comparatively analyzed, to clarify the physiological mechanism of tilapia's response to low-temperature stress.

View Article and Find Full Text PDF

Removal of radioactive uranyl ions (UO) from water by effective adsorbents is highly desired but remains a challenge. UO are easily combined with HO, and the polarization of HO affects the complexation between UO and the adsorbent. Thus, it is necessary to reconstruct the UO active site to improve the adsorption capacity.

View Article and Find Full Text PDF

This study comparatively investigated the influence of changes in pyrolysis temperature on the physicochemical, structural, and adsorptive properties of biochars derived from a green waste (Cynodon dactylon L.). For this purpose, the biophysically dried green wastes were pyrolyzed at 400 °C, 600 °C, and 800 °C under the same pyrolysis conditions.

View Article and Find Full Text PDF

Current synthesis routes of bismuth oxide nanosheets (BiONS) are relatively complicated, requiring the use of halogens or metalloids. Herein, a facile method to synthesize BiONS without the addition of halogens or other metalloids was developed. The synthesized BiONS were identified to have flake-shaped structures (300-1000 nm in width) with the thickness of 6-10 nm, which were predominantly made of β-BiO.

View Article and Find Full Text PDF

In this study, industrial wastewater and groundwater were comparatively investigated for their physicochemical properties, concentrations of potentially toxic elements (PTEs), human health risks and pollution source(s). Every month, 34 wastewater samples and 26 groundwater samples were collected, for a duration of one year. The results showed that the physicochemical parameters and concentrations of PTEs in the industrial wastewater exceeded the maximum permissible limits of Pakistan Environmental Protection Agency (2000).

View Article and Find Full Text PDF

The oxidation state of ions is a crucial aspect that often has been overlooked when determining the toxicity of chromium (Cr) species in environmental samples. In this study, a novel electrochemical sensor array based on gold-silver nanoparticles modified electrodes was developed for simultaneous determination of the two main chromium species (Cr(III) and (VI)). Specifically, the working electrodes of screen-printed carbon electrodes (SPCEs) were modified with silver-gold bimetallic nanoparticles through electrochemical deposition for detection of Cr(VI).

View Article and Find Full Text PDF

The solid contact ion-selective electrodes (SC-ISEs) have been extensively studied in the field of ion sensing as they offer the possibility of miniaturization, are relatively inexpensive in comparison to other analytical techniques and allow straightforward and routine analyses of ions in a number of clinical, environmental and industrial process samples. In recent years, significant interest has grown in the development of SC-ISEs with well-defined interfacialpotentials at the membrane, solid contact, and substrate electrode interfaces. This has resulted in interesting SC-ISEs exhibiting high electrode-to-electrode potential reproducibility, for those made in a single batch of electrodes, some approaching or exceeding those observed in liquid-contact ISEs.

View Article and Find Full Text PDF

Voltammetric sensors based on screen-printed electrodes (SPEs) await diverse applications in environmental monitoring, food, agricultural and biomedical analysis. However, due to the single-use and disposable characteristics of SPEs and the scale of measurements performed, their environmental impacts should be considered. A life cycle assessment was conducted to evaluate the environmental footprint of SPEs manufactured using various substrate materials (SMs: cotton textile, HDPE plastic, Kraft paper, graphic paper, glass, and ceramic) and electrode materials (EMs: platinum, gold, silver, copper, carbon black, and carbon nanotubes (CNTs)).

View Article and Find Full Text PDF

The impact of different biochars (BCs) on the physicochemical properties and immobilization of potentially toxic elements (PTEs) in contaminated soil irrigated with industrial wastewater for the last three decades was studied. Furthermore, the efficacy of applied BCs in reducing geostatistical risks was also evaluated. For this purpose, BCs were prepared from green waste (Cynodon dactylon L.

View Article and Find Full Text PDF

Para-Cresol is a water-soluble organic pollutant, which is harmful to organisms even at low concentrations. Therefore, it is important to rapidly detect the p-cresol in wastewater as well as natural water. In this work, a new, simple and stable biosensor was developed for on-site quantitatively determination and near real-time monitoring p-cresol in wastewater.

View Article and Find Full Text PDF

The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology.

View Article and Find Full Text PDF

Non-precious metal-nitrogen-carbon (MNC) materials have been recognized as alternatives to noble-metal catalysts, such as Au/C, Pt/C and Ru/C. As the precursors of MNC catalysts, carbonized zeolite imidazole frameworks (ZIFs) have been widely studied due to their porosity and the composition of ligands, including carbon and nitrogen. Herein, we successfully synthesize a non-precious metal-based ORR catalyst with nickel nanoparticles anchored on cobalt and nitrogen co-doped porous carbon/carbon nanotubes (Ni/Co-NC), employing ZIF-67 metal-organic frameworks as precursors.

View Article and Find Full Text PDF

In the present study, biochars (BCs) derived from naturally grown green waste (Cynodon dactylon L.) were investigated regarding their impacts on bioaccumulation of potentially toxic elements (PTEs), agronomic properties and human health risks of wheat crop cultivated on long-term industrially contaminated soil. Typically, three types of BCs were pyrolyzed at different highest temperature of treatment (HTT), i.

View Article and Find Full Text PDF

Phenolic compounds are bioactive natural products of considerable interest in pharmaceuticals and biomedicines. Due to their bioactive functions, phenolic compounds have received increasing attention in recent years. Therefore, it is necessary to develop new and advanced analytical methods for determination of phenolic compounds in relation to pharmaceutical and biomedical applications.

View Article and Find Full Text PDF

From the analytical chemistry point-of-view, an ideal sample preparation method should be simple, rapid, automatic, selective, precise, exhaustive, reproducible and protect the analyte-of-interest from degradation. In this study, a novel sample preparation method, named pressurized matrix solid-phase dispersion (p-MSPD) extraction was developed for simultaneously extracting, separating, purifying, isolating, and analyzing endogenous components in a solid sample matrix. Etlingera elatior, a traditional medicinal plant known as the torch ginger, was applied as a sample matrix to evaluate the p-MSPD process.

View Article and Find Full Text PDF

With increasing demand for biodiesel, crude glycerol as a by-product in biodiesel production has been generated and oversupplied. This study, therefore, explored the pretreatment and a subsequent two-stage microbial system to convert crude glycerol into high value-added products: 1,3-propanediol (1,3-PDO) and polyhydroxyalkanoates (PHAs). After pretreatment, long chain fatty acids (LCFAs) could be effectively removed from crude glycerol to eliminate the inhibition effects on subsequent microbial process.

View Article and Find Full Text PDF

Hance (ginger family) is an important Chinese medicine, especially in Southern China. A simple and effective high-performance thin-layer chromatography coupled with 2, 2-diphenyl-1-picrylhydrazyl bioautography (HPTLC-DPPH) and electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-Q-TOF-MS/MS) method was developed for the bioactivity-based quality control of The HPTLC-DPPH and ESI-Q-TOF-MS/MS were applied for the analysis of different parts of after using methanol extraction for 23 batches of taproot, four batches of aerial, and three batches of fibril parts. The systematic evaluation showed that similar components in taproot and aerial parts make the major antioxidant activity.

View Article and Find Full Text PDF

N-methyl-2-pyrrolidone (NMP) is widely used as a solvent in polymeric membrane fabrication process, its elimination from the process wastewater (normally at a high concentration > 1000 mg/L) prior to discharge is essential because of environmental concern. This study investigated the feasibility of treating high-strength NMP-containing process wastewater in a sequencing batch reactor (SBR; i.e.

View Article and Find Full Text PDF

Municipal solid waste (MSW) incineration fly ash (IFA) can be potentially reused as a substitute for some raw materials, but treatment for detoxification is indispensable owing to high contents of heavy metals in fly ash. In the present work, due to excessive leaching concentration of lead (Pb), a moderate thermal treatment with sodium hydroxide (NaOH) addition was employed to stabilize Pb in IFA. The moderate thermal treatment was performed under relatively low temperature ranging from 300 to 500°C and at retention time from 1 to 3 h with NaOH addition in a range of 1 to 9%.

View Article and Find Full Text PDF

To evaluate the effects of maternal pre-pregnancy body mass index (pre-BMI) and gestational weight gain (GWG) on neonatal birth weight (NBW) in the population of Chinese healthy pregnant women, attempting to guide weight control in pregnancy. A retrospective cohort study of 3772 Chinese women was conducted. The population was stratified by maternal pre-BMI categories as underweight (<18.

View Article and Find Full Text PDF

Objective: To develop and validate a solid phase extraction-high performance liquid chromatographic( SPE-HPLC) method for the simultaneous determination of indigo and brilliant blue in different types of food products.

Methods: The artificial colors in food products were extracted by acetonitrile / water and purified by WAX SPE cartridges, The separation was achieved using a Waters Symmetry C_(18)( 5 μm, 4. 6 mm × 250 mm) column and a binary gradient mobile phase of methanol and 0.

View Article and Find Full Text PDF