Angew Chem Int Ed Engl
February 2025
Thanks to the development of non-fullerene acceptor (NFA) materials, the photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20 %, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all-polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch-to-batch variation leads to quality control issues.
View Article and Find Full Text PDFAn effective manipulation of polaron pairs (PPs) for realizing amplified magneto-photocurrent (AMPC) is of critical importance toward the development of low power consumption and high-performance organic spin-optoelectronic devices, for instance magneto-photo-volatile memories. By far, it is challenging and there is a lack of method to reach AMPC. The typical magneto-photocurrent due to the light-matter interanion is primarily for unveiling the spin-dependent electron-hole dissociation in organic solar cells.
View Article and Find Full Text PDFBychkov-Rashba spin-orbit coupling (SOC) is decisive for photoinduced photoluminescence (PL) in terms of double emissions. It turns out to be remarkable for one-dimensional lead halide perovskite nanowires (PeNWs). This is primarily due to large surface to volume ratios and structural symmetry breaking fields in the reduced dimension.
View Article and Find Full Text PDFLow-temperature solution-made chiral lead halide perovskites (LHPs) have spontaneous Bychkov-Rashba spin orbit coupling (SOC) and chiral-induced spin selectivity (CISS) qualities. Their coexistence may give rise to considerable spin and charge conversion capabilities for spin-orbitronic applications. In this study, we demonstrate the spin-photogalvanic effect for (-MBA)PbI and (-MBA)PbI polycrystalline film-based lateral devices (100 μm channel length).
View Article and Find Full Text PDF