In this paper, the effects of species diversity, tree growth, and spatial clustering on mycorrhizal carbon and nitrogen sequestration and the interaction of soil physicochemical properties in Northeast China were investigated. Based on 720 10 m ∗ 10 m plots in Harbin Experimental Forest Farm of Northeast Forestry University, we determined mycorrhizal biomarkers of easily extractable Glomalin-related soil protein (EEG) and total Glomalin-related soil protein (TG). Four plant diversity indices, seven structural metrics, and five soil properties were also measured.
View Article and Find Full Text PDFSoil nitrogen (N) is an essential nutrient for tree growth, and excessive N is a source of pollution. This paper aims to define the effects of plant diversity and forest structure on various aspects of soil N cycling. Herein, we collected soils from 720 plots to measure total N content (TN), alkali-hydrolyzed N (AN), nitrate N (NO-N), ammonium N (NH-N) in a 7.
View Article and Find Full Text PDFHigh water-holding forests are essential for adapting to drought climates under global warming, and a central issue is which type of forests could conserve more water in the ecosystem. This paper explores how forest structure, plant diversity, and soil physics impact forest water-holding capacities. We investigated 720 sampling plots by measuring water-holding capacities from 1440 soil and litter samples, 8400 leaves, and 1680 branches and surveying 18,054 trees in total (28 species).
View Article and Find Full Text PDFPatterns of the phylogenetic structure have been broadly applied to predict community assembly processes. However, the distribution pattern of evolutionary diversity and its drivers under nature conservation are still poorly understood in boreal forests. Here, we investigated 1738 sampling plots and subplots from distinct protection intensities (PIs) zones in five representative National Nature Reserves (NNRs).
View Article and Find Full Text PDFNicotinamide and catecholamines are both degraded by S-adenosylmethionine-dependent methylation. Whether excess nicotinamide affects the degradation of catecholamines is unknown. The aim of this study was to investigate the effect of nicotinamide on the methylation status of the body and methylation-mediated catecholamine degradation in both normotensives and hypertensives.
View Article and Find Full Text PDFWorld J Gastroenterol
December 2009
Aim: To investigate whether nicotinamide overload plays a role in type 2 diabetes.
Methods: Nicotinamide metabolic patterns of 14 diabetic and 14 non-diabetic subjects were compared using HPLC. Cumulative effects of nicotinamide and N(1)-methylnicotinamide on glucose metabolism, plasma H(2)O(2) levels and tissue nicotinamide adenine dinucleotide (NAD) contents of adult Sprague-Dawley rats were observed.