Heart failure (HF) has emerged as a significant global public health challenge owing to its high rates of morbidity and mortality. Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is regarded as a pivotal factor in the onset and progression of HF. Therefore, inhibiting the activation of the NLRP3 inflammasome may represent a promising therapeutic approach for preventing and treating HF.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.
Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.
In the context of escalating standards of living, the demand for healthy and multifunctional textiles is increasing. As a kind of cellulose macromolecular-based material, lyocell fiber has low carbon, is environmentally friendly, and demonstrates superb performance. The utilization of some Chinese herb dyes solves the pollution problem in the color and functionality construction of lyocell fabric by synthetic dyes and finishing agents.
View Article and Find Full Text PDFThis study assessed and compared meat quality and fiber characteristics of (LL), (PM), and muscles among Hanwoo (HW), Jeju black (BL), and their crossbred (BH) cattle. Twelve carcasses from each breed (36 in total) were used in this study. BL and BH had higher moisture and crude ash contents and lower crude fat and protein contents than HW, regardless of the muscle type.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often arises in the context of chronic liver disease, such as hepatitis B or C infection, and cirrhosis. Advanced unresectable HCC (uHCC) presents significant treatment challenges due to its advanced stage and inoperability. One efficient treatment method for advanced uHCC is the use of hepatic arterial infusion chemotherapy (HAIC) combined with transcatheter arterial embolization (TAE).
View Article and Find Full Text PDFCardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs.
View Article and Find Full Text PDF: the aim of this study was to improve the stability and bioavailability of paeoniflorin (PF) by using nanoparticle encapsulation technology. : paeoniflorin nanoparticles (PF NPs) were prepared with PLGA as the carrier using the compound emulsion method. The nanoparticles were characterised by using a Malvern laser particle sizer, transmission electron microscope (TEM), X-ray diffraction (XRD) analyser, and Fourier-transform infrared (FT-IR) spectrometry.
View Article and Find Full Text PDFMyocardial infarction (MI) is one of the most prevalent types of cardiovascular disease. During MI, myocardial cells become ischemic and necrotic due to inadequate blood perfusion, leading to irreversible damage to the heart. Despite the development of therapeutic strategies for the prevention and treatment of MI, their effects are still unsatisfactory.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2024
Purpose: A serum medicinal chemistry analysis was performed to investigate the pharmacological basis of Xintongtai granule and to predict the potential mechanism of anti-atherosclerotic action based on the blood components.
Methods: UPLC-Q-TOF-MS/MS was used to analyze the in vitro chemical composition and in vivo blood components of Xintongtai granule, and to detect the blood drug concentration. The PPI network was constructed by collecting blood components and disease targets through the network pharmacology method, and the key targets were subjected to GO and KEGG functional enrichment analyses, so as to construct the topology network of drug-component-target-disease, and to validate the network by molecular docking.
Objective: This study aims to explore the mechanism of action of Yixintai in treating chronic ischemic heart failure by combining bioinformatics and experimental validation.
Materials And Methods: Five potential drugs for treating heart failure were obtained from Yixintai (YXT) through early mass spectrometry detection. The targets of YXT for treating heart failure were obtained by a search of online databases.
Purpose: This study aims to investigate the protective mechanism of dihydromyricetin PLGA nanoparticles (DMY-PLGA NPs) against myocardial ischemia-reperfusion injury (MIRI) in vitro and the improvement of oral bioavailability in vivo.
Methods: DMY-PLGA NPs was prepared and characterized by emulsifying solvent volatilization, and the oxidative stress model of rat H9c2 cardiomyocyte induced by H2O2 was established. After administration, cell survival rate, lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected, and the expressions of PGC1α and PPARα were detected by western blot (WB).
Neurodegenerative disorders represent a significant and growing global health challenge, necessitating continuous advancements in diagnostic tools for accurate and early detection. This work explores the recent progress in Magnetic Resonance Imaging (MRI) techniques and their application in the realm of neurodegenerative disorders. The introductory section provides a comprehensive overview of the study's background, significance, and objectives.
View Article and Find Full Text PDF(1) Background: Ginsenoside Rb1-PLGA nanoparticles (GRb1@PLGA@NPs) represent a novel nanotherapeutic system, yet their therapeutic efficacy and underlying mechanisms for treating heart failure (HF) remain unexplored. This study aims to investigate the potential mechanisms underlying the therapeutic effects of GRb1@PLGA@NPs in HF treatment; (2) Methods: The left anterior descending coronary artery ligation was employed to establish a HF model in Sprague-Dawley rats, along with an in vitro oxidative stress model using H9c2 myocardial cells. Following treatment with GRb1@PLGA@NPs, cardiac tissue pathological changes and cell proliferation were observed.
View Article and Find Full Text PDFThe Chuantieling gel patch (CGP), a traditional Chinese medicine compound, is an external treatment for asthma. It has shown remarkable effectiveness in alleviating asthma-related airway hyperresponsiveness and inflammation. Nevertheless, there is currently no information available regarding the analysis of quality markers for CGP, and there is a need for further improvement in quality control research.
View Article and Find Full Text PDFThis study aimed to construct a Ginsenoside Rb1-PLGA nano drug delivery system, optimize its preparation process, characterize and evaluate the resulting Ginsenoside Rb1-PLGA Nanoparticles (GRb1@PLGA@NPs). GRb1@PLGA@NPs were prepared using the emulsion solvent evaporation method. The optimal preparation process was determined using Plackett-Burman design combined with Box-Behnken experiments.
View Article and Find Full Text PDFIntroduction: The successful use of machine learning (ML) for medical diagnostic purposes has prompted myriad applications in cancer image analysis. Particularly for hepatocellular carcinoma (HCC) grading, there has been a surge of interest in ML-based selection of the discriminative features from high-dimensional magnetic resonance imaging (MRI) radiomics data. As one of the most commonly used ML-based selection methods, the least absolute shrinkage and selection operator (LASSO) has high discriminative power of the essential feature based on linear representation between input features and output labels.
View Article and Find Full Text PDFConventional chemotherapy usually fails to achieve its intended effect because of the poor water solubility, poor tumor selectivity, and low tumor accumulation of chemotherapy drugs. The systemic toxicity of chemotherapy agents is also a problem that cannot be ignored. It is expected that smart nano-drug delivery systems that are able to respond to tumor microenvironments will provide better therapeutic outcomes with decreased side effects of chemotherapeutics.
View Article and Find Full Text PDF