Publications by authors named "Lixia Diao"

Delta-like Ligand 3 (DLL3) targeting therapies are promising in small cell lung cancer (SCLC) treatment. However, DLL3 expression in SCLC and other neuroendocrine neoplasms (NEN) is heterogeneous and not well characterized. We describe the landscape of DLL3 at the mRNA and protein levels across SCLC, large cell neuroendocrine carcinoma (LCNEC), and non-small cell lung cancer.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs primarily known for their role in the chemical modification of other RNAs. Recent studies suggested that snoRNAs may play a broader role in anti-cancer treatments such as targeted therapies and immunotherapies. Despite these insights, the comprehensive landscape of snoRNA associations with drug response and immunotherapy outcomes remains unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • - Small cell lung cancer (SCLC) is known for its resistance to therapy, making it essential to identify phenotypes that contribute to this resistance and immune evasion; previous studies have indicated that DNA damage response (DDR) mechanisms may play a role in these issues across various cancers.
  • - A new method was developed to analyze DDR genes in SCLC clinical samples, revealing three distinct DDR phenotypes characterized by differences in DNA repair gene expression, replication stress, and G2/M cell cycle arrest, which correlate with how SCLC tumors respond to chemotherapy.
  • - The study concludes that understanding these DDR clusters can improve our knowledge of SCLC biology and treatment responses, suggesting that targeting specific DDR phenotypes may enhance patient outcomes in the
View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is an aggressive malignancy composed of distinct transcriptional subtypes, but implementing subtyping in the clinic has remained challenging, particularly due to limited tissue availability. Given the known epigenetic regulation of critical SCLC transcriptional programs, we hypothesized that subtype-specific patterns of DNA methylation could be detected in tumor or blood from SCLC patients. Using genomic-wide reduced-representation bisulfite sequencing (RRBS) in two cohorts totaling 179 SCLC patients and using machine learning approaches, we report a highly accurate DNA methylation-based classifier (SCLC-DMC) that can distinguish SCLC subtypes.

View Article and Find Full Text PDF

Expression quantitative trait locus (eQTL) analysis is a powerful tool used to investigate genetic variations in complex diseases, including cancer. We previously developed a comprehensive database, PancanQTL, to characterize cancer eQTLs using The Cancer Genome Atlas (TCGA) dataset, and linked eQTLs with patient survival and GWAS risk variants. Here, we present an updated version, PancanQTLv2.

View Article and Find Full Text PDF

Non-small cell lung cancers that harbor concurrent KRAS and TP53 (KP) mutations are immunologically warm tumors with partial responsiveness to anti-PD-(L)1 blockade; however, most patients observe little or no durable clinical benefit. To identify novel tumor-driven resistance mechanisms, we developed a panel of KP murine lung cancer models with intrinsic resistance to anti-PD-1 and queried differential gene expression between these tumors and anti-PD-1-sensitive tumors. We found that the enzyme autotaxin (ATX), and the metabolite it produces, lysophosphatidic acid (LPA), were significantly upregulated in resistant tumors and that ATX directly modulated antitumor immunity, with its expression negatively correlating with total and effector tumor-infiltrating CD8+ T cells.

View Article and Find Full Text PDF

Introduction: Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB.

View Article and Find Full Text PDF
Article Synopsis
  • Effective treatment options are needed for non-small cell lung cancer patients with EGFR mutations who develop resistance to EGFR-targeting drugs due to a process called epithelial-to-mesenchymal transition (EMT).
  • The study identifies CD70 as a key protein that is significantly increased in cells that show resistance and is linked to cellular survival and invasiveness, especially in drug-tolerant persister cells (DTPCs).
  • Targeting CD70 through methods like antibody drug conjugates (ADCs) and engineered T or NK cells shows promising results in combating cells resistant to EGFR tyrosine kinase inhibitors, suggesting the potential for CD70 as a new treatment strategy.
View Article and Find Full Text PDF

Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel integration approach using the shared nearest neighbors algorithm was developed, enabling the creation of a comprehensive network from immunogenomic data of non-small-cell lung cancer patients.
  • * This new approach surpassed traditional networks in identifying established and novel interactions, revealing significant insights related to patient recurrence and the TP53 oncogenotype.
View Article and Find Full Text PDF

One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas.

View Article and Find Full Text PDF

Background: We recently conducted Cetuximab-AVElumab-Lung (CAVE-Lung), a proof-of-concept, translational and clinical trial, to evaluate the combination of two IgG1 monoclonal antibodies (mAb): avelumab, an anti-PD-L1 drug, and cetuximab, an anti-epidermal growth factor receptor (EGFR) drug, as second- or third-line treatment in non-small cell lung cancer (NSCLC) patients. We have reported clinically relevant anti-tumor activity in 6/16 patients. Clinical benefit was accompanied by Natural Killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC).

View Article and Find Full Text PDF

Background: To determine whether antibiotic treatment is a risk factor for immune-related adverse events (irAEs) across different patients with cancer receiving anti-PD-1/PD-L1 therapies.

Methods: The retrospective analysis includes clinical information from 767 patients with cancer treated at Hunan Cancer Hospital from 2017 to 2020. The pharmacovigilance data analysis includes individual cases of 38,705 safety reports from the US Food and Drug Administration Adverse Event Reporting System (FAERS) from 2014 to 2020, and 25,122 cases of safety reports from the World Health Organization database VigiBase from 2014 to 2019.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapies exhibit substantial clinical benefit in different cancers, but relatively low response rates in the majority of patients highlight the need to understand mutual relationships among immune features. Here, we reveal overall positive correlations among immune checkpoints and immune cell populations. Clinically, patients benefiting from ICB exhibited increases for both immune stimulatory and inhibitory features after initiation of therapy, suggesting that the activation of the immune microenvironment might serve as the biomarker to predict immune response.

View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor heterogeneity (ITH) associated with high recurrence rate and suboptimal response to immunotherapy. Here, using multi-region whole exome/T cell receptor (TCR) sequencing as well as immunohistochemistry, we reveal a rather homogeneous mutational landscape but extremely cold and heterogeneous TCR repertoire in limited-stage SCLC tumors (LS-SCLCs). Compared to localized non-small cell lung cancers, LS-SCLCs have similar predicted neoantigen burden and genomic ITH, but significantly colder and more heterogeneous TCR repertoire associated with higher chromosomal copy number aberration (CNA) burden.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a transcriptionally governed process by which cancer cells establish a front-rear polarity axis that facilitates motility and invasion. Dynamic assembly of focal adhesions and other actin-based cytoskeletal structures on the leading edge of motile cells requires precise spatial and temporal control of protein trafficking. Yet, the way in which EMT-activating transcriptional programs interface with vesicular trafficking networks that effect cell polarity change remains unclear.

View Article and Find Full Text PDF

Loss-of-function somatic mutations of , a tumor suppressor gene encoding LKB1 that contributes to the altered metabolic phenotype of cancer cells, is the second most common event in lung adenocarcinomas and often co-occurs with activating mutations. Tumor cells lacking LKB1 display an aggressive phenotype, with uncontrolled cell growth and higher energetic and redox stress due to its failure to balance ATP and NADPH levels in response to cellular stimulus. The identification of effective therapeutic regimens for patients with LKB1-deficient non-small cell lung cancer (NSCLC) remains a major clinical need.

View Article and Find Full Text PDF

Introduction: The transcription factor MYC is overexpressed in 30% of small cell lung cancer (SCLC) tumors and is known to modulate the balance between two major pathways of metabolism: glycolysis and mitochondrial respiration. This duality of MYC underscores the importance of further investigation into its role in SCLC metabolism and could lead to insights into metabolic targeting approaches.

Methods: We investigated differences in metabolic pathways in transcriptional and metabolomics datasets based on cMYC expression in patient and cell line samples.

View Article and Find Full Text PDF

Altered A-to-I RNA editing has been widely observed in many human cancers and some editing sites are associated with drug sensitivity, implicating its therapeutic potential. Increasing evidence has demonstrated that a quantitative trait loci mapping approach is effective to understanding the genetic basis of RNA editing. We systematically performed RNA editing quantitative trait loci (edQTL) analysis in 33 human cancer types for >10 000 cancer samples and identified 320 029 edQTLs.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18-21 and are established driver mutations in non-small cell lung cancer (NSCLC). Targeted therapies are approved for patients with 'classical' mutations and a small number of other mutations. However, effective therapies have not been identified for additional EGFR mutations.

View Article and Find Full Text PDF

Introduction: Subgroup analyses from clinical studies have suggested that among patients with metastatic NSCLC receiving chemotherapy, females may derive less benefit from the addition of the vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab (BV) than males. This has raised the question of whether estrogen may affect the response to antiangiogenic therapy.

Methods: To address this, we investigated the effects of estrogen on tumor growth, angiogenesis, and the response to BV in human xenograft models of NSCLC.

View Article and Find Full Text PDF