To understand and control thermal conductance of interface between metal and semiconductor has now become a crucial task for the thermal design and management of nano-electronic and micro-electronic devices. The interfacial alignments and electronic characteristics of the interfaces between metal and semiconductor are studied using a first-principles calculation based on hybrid density functional theory. The thermal conductance of interfaces between metal and semiconductor were calculated and analyzed using diffuse mismatch model, acoustic mismatch model and nonequilibrium molecular dynamics methods.
View Article and Find Full Text PDFThe ability to control the polarity of an all-sputtered epitaxial GaN/AlN/Al film on a Si(111) substrate via intermediate oxidization was investigated. A stable surface of GaN on a Si substrate is a N-terminated surface (-c surface); hence, for electric device applications, the Ga-terminated surface (+c surface) is preferable. The GaN/AlN/Al film on Si(111) showed a -c surface, as confirmed by time-of-flight low-energy atom scattering spectroscopy (TOFLAS) and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFUnderstanding the process of oxidation on the surface of GaN is important for improving metal-oxide-semiconductor (MOS) devices. Real-time X-ray photoelectron spectroscopy was used to observe the dynamic adsorption behavior of GaN surfaces upon irradiation of HO, O, NO, and NO gases. It was found that HO vapor has the highest reactivity on the surface despite its lower oxidation power.
View Article and Find Full Text PDFMicro-cantilever beams have been widely used for surface sensing applications as well as atomic force microscope. However, surface stress appears in cantilever beams due to a variety of factors such as the absorption of molecules, temperature variations, materials imperfectness, and the fabrication process. Single-crystal diamond (SCD) has been regarded as an ideal material for cantilever sensors through the surface effect due to the outstanding mechanical rigidity and chemical inertness.
View Article and Find Full Text PDFThe highly efficient photovoltaic cells require the In-rich InGaN film with a thickness more than 300 nm to achieve the effective photo⋅electricity energy conversion. However, the InGaN thick films suffer from poor crystalline quality and phase separations by using the conventional low-pressure metal organic chemical vapor deposition (MOCVD). We report on the growth of 0.
View Article and Find Full Text PDFThe ultrawide band gap of diamond distinguishes it from other semiconductors, in that all known defects have deep energy levels that are less active at room temperature. Here, we present the effect of deep defects on the mechanical energy dissipation of single-crystal diamond experimentally and theoretically up to 973 K. Energy dissipation is found to increase with temperature and exhibits local maxima due to the interaction between phonons and deep defects activated at specific temperatures.
View Article and Find Full Text PDFWe report on a highly sensitive gallium nitride (GaN) micro-electromechanical (MEMS) resonator with a record quality factor () exceeding 10 at the high resonant frequency () of 911 kHz by the strain engineering for the GaN-on-Si structure. The of the double-clamped GaN beam bridge is increased from 139 to 911 kHz when the tensile stress is increased to 640 MPa. Although it is usually regarded that the energy dissipation increases with increasing resonant frequency, an ultra-high -factor which is more than two orders of magnitude higher than those of the other reported GaN-based MEMS is obtained.
View Article and Find Full Text PDFA conventional wisdom is that the sensing properties of magnetic sensors at high temperatures will be degraded due to the materials' deterioration. Here, the concept of high-temperature enhancing magnetic sensing is proposed based on the hybrid structure of SCD MEMS resonator functionalized with a high thermal-stable ferromagnetic galfenol (FeGa) film. The delta effect of the magnetostrictive FeGa thin film on Ti/SCD cantilevers is investigated by varying the operating temperature from 300 to 773 K upon external magnetic fields.
View Article and Find Full Text PDFThe authors report on a high-performance metal-semiconductor-metal (MSM) photodetector fabricated on the CdZnTe single crystal with the photoresponse from visible to near infrared region. Benefitting from the high-quality single crystallization, an ultra-low dark current of ~10 A was obtained at a high applied voltage of 10 V, leading to a photo-to-dark-current ratio of more than 10 at 700 nm light illumination. The highest responsivity is estimated to be 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
Electrochemical assembly was applied directly to determine the aggregation of nanoclusters in isolated fullerene-rich (54-63 wt %) thin films. The electroactive reactions were achieved using electroactive carbazole and pyrene, which led to distinguishable nanoparticle-like and irregular cluster formations. These films, with amorphous and transparent states, showed good photoactivity and significant optical limiting response with an excellent threshold of 63 mJ cm(-2).
View Article and Find Full Text PDFThe concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.
View Article and Find Full Text PDFFabrication of a high-temperature deep-ultraviolet photodetector working in the solar-blind spectrum range (190-280 nm) is a challenge due to the degradation in the dark current and photoresponse properties. Herein, β-Ga2O3 multi-layered nanobelts with (l00) facet-oriented were synthesized, and were demonstrated for the first time to possess excellent mechanical, electrical properties and stability at a high temperature inside a TEM studies. As-fabricated DUV solar-blind photodetectors using (l00) facet-oriented β-Ga2O3 multi-layered nanobelts demonstrated enhanced photodetective performances, that is, high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, importantly, at a temperature as high as 433 K, which are comparable to other reported semiconducting nanomaterial photodetectors.
View Article and Find Full Text PDFMultiple stacked InGaN/GaN quantum dots are embedded into an InGaN p-n junction to develop multilevel intermediateband (MIB) solar cells. An IB transition is evidenced from both experiment and theoretical calculations. The MIB solar cell shows a wide photovoltaic response from the UV to the near-IR region.
View Article and Find Full Text PDFPhotodetectors fabricated from one-dimensional semiconductors are always dominated by the surface states due to their large surface-to-volume ratio. Therefore, the basic 5S requirements (high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability) for practical photodetectors are difficult to satisfy. We report on high-temperature and high-detectivity solar-blind deep-ultraviolet (DUV) photodetectors based on β-Ga2O3 nanowires, in which the photoresponse behavior is dominated by the bulk instead of the surface states.
View Article and Find Full Text PDFUltraviolet (UV) photodetectors have drawn extensive attention owing to their applications in industrial, environmental and even biological fields. Compared to UV-enhanced Si photodetectors, a new generation of wide bandgap semiconductors, such as (Al, In) GaN, diamond, and SiC, have the advantages of high responsivity, high thermal stability, robust radiation hardness and high response speed. On the other hand, one-dimensional (1D) nanostructure semiconductors with a wide bandgap, such as β-Ga2O3, GaN, ZnO, or other metal-oxide nanostructures, also show their potential for high-efficiency UV photodetection.
View Article and Find Full Text PDFThe typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate.
View Article and Find Full Text PDFIn situ one-pot rapid layer-by-layer assembly of polymeric films as an active layer of a photoactive device via alternation of reductive and oxidative electropolymerization has been demonstrated. This novel fabrication without moving or changing experimental gears would be a powerful strategy to develop automated layer-by-layer machines.
View Article and Find Full Text PDFCore-level and valence band spectra of In Ga N films were measured using hard x-ray photoemission spectroscopy (HX-PES). Fine structure, caused by the coupling of the localized Ga 3d and In 4d with N 2s states, was experimentally observed in the films. Because of the large detection depth of HX-PES (∼20 nm), the spectra contain both surface and bulk information due to the surface band bending.
View Article and Find Full Text PDFElectrochemical-coupling layer-by-layer (ECC-LbL) assembly is introduced as a novel fabrication methodology for preparing layered thin films. This method allows us to covalently immobilize functional units (e.g.
View Article and Find Full Text PDF