Publications by authors named "Liwei Lian"

Objectives: Plant polysaccharides have attracted increasing attention due to their high efficiency and low toxicity. polysaccharide (CPP) is an essential substance extracted from , known for its excellent antioxidant and neuroprotective effects. However, it is still unclear how CPP improves nerve protection and what its underlying molecular mechanisms are.

View Article and Find Full Text PDF

Background: Amino acids (AAs) are the building blocks of proteins, but they also serve as biological compounds in biochemical processes, and d-AA isomers are increasingly being recognized as important signaling molecules. As the main organic substrate used by cells in the intestinal tract, the role of the chiral specificity of glutamine is still largely ignored.

Results: In a previous study, we found that d-glutamine affected the quorum sensing of Lactiplantibacillus plantarum A3, promoted the release of signaling molecule AI-2 and up-regulated the expression of the LuxS gene.

View Article and Find Full Text PDF

Probiotic products that contain lactobacilli have long histories of safe use as Lactobacillus strains have many physiological functions in the gastrointestinal tract (GIT). However, the viability of probiotics can be affected by food processing and the adverse environment. This study investigated the O/W (Oil-in-water emulsions) emulsions formed by coagulation of casein/GA (Gum Arabic) complexes for Lactiplantibacillus plantarum microencapsulation, and the stability of the strains during gastrointestinal environment were also determined.

View Article and Find Full Text PDF

The by-products of milk fermentation by lactic acid bacteria provide potential health benefits to the balance of host intestinal microflora. In this study, the anti-inflammatory properties of fatty acids from monoculture-strain (Lactiplantibacillusplantarum A3) and multiple-strain (Streptococcus thermophilus, Lactobacillus bulgaricus, and L. plantarum A3 1:1:2) fermented milk were evaluated in a mouse model of dextran sulfate sodium-induced colitis, and the gut microbiota regulation properties of the fatty acids were also investigated.

View Article and Find Full Text PDF

As a multifunctional lactic acid bacterium, Lactobacillus plantarum has been proved to survive in the human gastrointestinal tract, and it can also colonize this tract. In this study, the effects of L. plantarum ATCC 14917 metabolic profile caused by initial acid-base (pH 5.

View Article and Find Full Text PDF

In the present work, we studied the effects of different oligosaccharides on Lactobacillus plantarum ATCC14917, focusing on growth and adhesion characteristics and fermented milk flavor. The results showed that mannan-oligosaccharide (MOS) had the greatest proliferative effect on L. plantarum ATCC14917 in vitro.

View Article and Find Full Text PDF

Aim: The role of mucus-binding protein (MUB) on the adhesion activity and immunomodulatory effect of Lactobacillus acidophilus.

Materials & Methods: The current research mainly focuses on the adhesion and immune function of MUB from L. acidophilus.

View Article and Find Full Text PDF

Lactic acid bacteria are the majority fermentation starter in the traditional fermented foods. In this research, a promising Lactobacillus plantarum was isolated from Sichuan pickle and its adhesion properties were analyzed in simulated gastrointestinal fluid with different methods. Meanwhile, the immunomodulatory effect of this strain was also evaluated in the Caco-2 cells.

View Article and Find Full Text PDF

The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro.

View Article and Find Full Text PDF

Many health effects of Lactobacillus acidophilus are desirable among these the adhesion ability is vital to enhance the possibility of colonization and stabilization associated with the gut mucosal barrier. In this study, the growth characteristics and the adhesion activity of L. acidophilus in the intestine-like pH environment (pH 7.

View Article and Find Full Text PDF