Publications by authors named "Liwei Hui"

The density of functional ligands on lipid nanoparticles (LNPs) greatly determined its capability of postfunctionalization and targetability for the applications of personalized nanomedicine and drug/gene delivery. This work is to investigate whether and how formulation methods influence the presentation of surface ligands. Biotin-modified LNPs as a functional LNP model were synthesized by four different formulation methods.

View Article and Find Full Text PDF

We report the fabrication of DNA-templated Pt nanostructures by area-selective atomic layer deposition. A DNA-templated self-assembled monolayer was used to mediate the area-selective deposition of Pt. Using this approach, we demonstrated the fabrication of both single- and two-component nanostructure patterns, including Pt, TiO/Pt, and AlO/Pt.

View Article and Find Full Text PDF

This paper reports an antibacterial chip that can selectively capture bacteria and kill them using low-voltage DC electricity. We prepared a bacteria-imprinted, flexible PDMS chip that can separate target bacteria from suspensions with high selectivity. The chip contained integrated electrodes that can kill the captured bacteria within 10 min by applying a low DC voltage.

View Article and Find Full Text PDF

We demonstrate area-selective atomic layer deposition (ALD) of oxides on DNA nanostructures. Area-selective ALD of AlO, TiO, and HfO was successfully achieved on both 2D and 3D DNA nanostructures deposited on a polystyrene (PS) substrate. The resulting DNA-inorganic hybrid structure was used as a hard mask to achieve deep etching of a Si wafer for antireflection applications.

View Article and Find Full Text PDF

This paper reports antifouling properties of nanostructured SiO substrates patterned by DNA lithography. We used DNA triangle nanostructures as templates to produce triangular-shaped trenches 130 nm in size on SiO surfaces. Using as a bacterial model, we found that such nanopatterned surface showed a 75% reduction in bacterial adhesion and 72% reduction in biofilm density at 35% surface coverage of the nanoscale triangular trenches.

View Article and Find Full Text PDF

This Concept provides an overview of recent developments of DNA-based nanofabrication and discusses its potential applications in the area of surface engineering. The first part of the paper discusses the strength and limitations of existing DNA-based nanofabrication methods. The second part highlights several examples of surface engineering applications involving nano- and microscale surface textures.

View Article and Find Full Text PDF

"On-demand" drug release within target site is critical for targeted drug delivery systems. We herein integrate the advantages of upper critical solution temperature (UCST) polymers, photothermal agent, and red blood cell (RBC) membrane coating into a single drug delivery nanosystem and, for the first time, achieve remotely controlled UCST polymer-based drug delivery system that undergoes "on-demand" drug release within specified zone. When in laser-off state, the resulting nanosystem demonstrates significantly diminished drug self-leakage, owing to shielding by the RBC membrane coating.

View Article and Find Full Text PDF

It is found that carbon quantum dots (CQDs) self-assemble to a layer structure at ice crystals-water interface with freeze- drying. Such layers interconnect with each other, forming a free-standing CQD assembly, which has an interlayer distance of about 0.366 nm, due to the existence of curved carbon rings other than hexagons in the assembly.

View Article and Find Full Text PDF

Whereas diverse graphene quantum dots (GQDs) with basal planes similar to those of graphene oxide sheets (i.e., GO-GQDs) lack antibacterial property, that prepared by rupturing C60 cage (i.

View Article and Find Full Text PDF

Net cationicity of membrane-disruptive antimicrobials is necessary for their activity but may elicit immune attack when administered intravenously. By cloaking a dendritic polycation (G2) with poly(caprolactone-b-ethylene glycol) (PCL-b-PEG), we obtain a nanoparticle antimicrobial, G2-g-(PCL-b-PEG), which exhibits neutral surface charge but kills >99.9% of inoculated bacterial cells at ≤8 μg/mL.

View Article and Find Full Text PDF

We report an antibacterial surface that kills airborne bacteria on contact upon minutes of solar near-infrared (NIR) irradiation. This antibacterial surface employs reduced graphene oxide (rGO), a well-known near-infrared photothermal conversion agent, as the photosensitizer and is prepared by assembling oppositely charged polyelectrolyte-stabilized rGO sheets (PEL-rGO) on a quartz substrate with the layer-by-layer (LBL) technique. Upon solar irradiation, the resulting PEL-rGO LBL multilayer efficiently generates rapid localized heating and, within minutes, kills >90% airborne bacteria, including antibiotic-tolerant persisters, on contact, likely by permeabilizing their cellular membranes.

View Article and Find Full Text PDF

Here, three novel cholesterol (Ch)/low molecular weight polyethylene glycol (PEG) conjugates, termed α, ω-cholesterol-functionalized PEG (Ch2-PEGn), were successfully synthesized using three kinds of PEG with different average molecular weight (PEG600, PEG1000 and PEG2000). The purpose of the study was to investigate the potential application of novel cationic liposomes (Ch2-PEGn-CLs) containing Ch2-PEGn in gene delivery. The introduction of Ch2-PEGn affected both the particle size and zeta potential of cationic liposomes.

View Article and Find Full Text PDF

We show that simply converting the hydrophobic moiety of an antimicrobial peptide (AMP) or synthetic mimic of AMPs (SMAMP) into a hydrophilic one could be a different pathway toward membrane-active antimicrobials preferentially acting against bacteria over host cells. Our biostatistical analysis on natural AMPs indicated that shorter AMPs tend to be more hydrophobic, and the hydrophilic-and-cationic mutants of a long AMP experimentally demonstrated certain membrane activity against bacteria. To isolate the effects of antimicrobials' hydrophobicity and systematically examine whether hydrophilic-and-cationic mutants could inherit the membrane activity of their parent AMPs/SMAMPs, we constructed a minimal prototypical system based on methacrylate-based polymer SMAMPs and compared the antibacterial membrane activity and hemolytic toxicity of analogues with and without the hydrophobic moiety.

View Article and Find Full Text PDF

There are significant controversies on the antibacterial properties of graphene oxide (GO): GO was reported to be bactericidal in saline, whereas its activity in nutrient broth was controversial. To unveil the mechanisms underlying these contradictions, we performed antibacterial assays under comparable conditions. In saline, bare GO sheets were intrinsically bactericidal, yielding a bacterial survival percentage of <1% at 200 μg/mL.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont2v1nci8c9vrbh7ov0oq98kbu61kdem5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once