Background: Reasonable nitrogen (N) supply is critical for increasing rice yield while improving grain quality and nitrogen use efficiency (NUE). However, the trade-off relationship between yield, quality and NUE of rice under N management has not been well understood enough. In the present study, a 2-year field experiment was conducted to identify optimal N fertilizer management practices that resulted in high-yield, high-quality and high-NUE by using the technique for order preference by similarity to an ideal solution (TOPSIS) with entropy weight (EW) method.
View Article and Find Full Text PDFBackground And Aims: Climate warming has become an indisputable fact, and wheat is among the most heat-sensitive cereal crops. Heat stress during grain filling threatens global wheat production and food security. Here, we analyzed the physiological and proteomic changes by delayed sowing on the photosynthetic capacity of winter wheat leaves under heat stress.
View Article and Find Full Text PDFBackground: Sowing date, seeding rate, and nitrogen (N) topdressing ratio have strong effects on grain yield (GY) and bread-making quality (BQ) in bread wheat. Simultaneous improvement in GY and BQ in bread wheat has long been a challenge due to the inverse relationship between GY and grain protein concentration (GPC). In this study, we investigated whether the GY and BQ of bread wheat sown on different dates could be improved simultaneously by optimizing the seeding rate and the N topdressing ratio.
View Article and Find Full Text PDFTo get an optimal irrigation regime and planting density for simultaneous improvement of grain yield (GY) and water use efficiency (WUE) in winter wheat, we examined the responses of 'Tainong 18' (with bigger ears) and 'Shannong 22' (with medium-sized ears) under four irrigation regimes, including 0, 45, 60, and 75 mm. Those two cultivars were planted at four densities: Tainong 18 at 135×10, 270×10, 405×10, and 540×10 plants·hm and Shannong 22 at 90×10, 180×10, 270×10, and 360×10 plants·hm. The interactive effects of irrigation regimes and plant densities on GY, water consumption characteristics, and WUE were investigated.
View Article and Find Full Text PDF