Crystallization is a fundamental natural phenomenon and the ubiquitous physical process in materials science for the design of new materials. So far, experimental observations of the structural dynamics in crystallization have been mostly restricted to slow dynamics. We present here an exclusive way to explore the dynamics of crystallization in highly controlled conditions (i.
View Article and Find Full Text PDFFemtosecond laser pulses have opened new frontiers for the study of ultrafast phase transitions and nonequilibrium states of matter. In this Letter, we report on structural dynamics in atomic clusters pumped with intense near-infrared (NIR) pulses into a nanoplasma state. Employing wide-angle scattering with intense femtosecond x-ray pulses from a free-electron laser source, we find that highly excited xenon nanoparticles retain their crystalline bulk structure and density in the inner core long after the driving NIR pulse.
View Article and Find Full Text PDFThe increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser.
View Article and Find Full Text PDFCoulomb explosion of diiodomethane CHI molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CHI with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CHI in comparison to CHI.
View Article and Find Full Text PDFOne of the main drawbacks of the swept source optical coherence tomography (SS-OCT) is its limited axial range. A novel interferometer configuration is proposed, equipped in each arm with an adjustable path length ring. By compensating the losses in the rings using semiconductor optical amplifiers, multiple paths A-scans can be obtained which when combined axially, can lead to an extremely long overall axial range.
View Article and Find Full Text PDFWe present a novel low-coherence interferometer configuration, equipped in each arm with an adjustable optical path length ring. By compensating for the losses in the rings using semiconductor optical amplifiers, interference of low-coherence light after traversing the two rings 18 times is obtained. This configuration is employed to demonstrate simultaneous en face optical coherence tomography imaging at five different depths in a Drosophila melanogaster fly.
View Article and Find Full Text PDF