Microbial electrosynthetic cells containing Methylobacterium extorquens were studied for the reduction of CO to formate by direct electron injection and redox mediator-assisted approaches, with CO as the sole carbon source. The formation of a biofilm on a carbon felt (CF) electrode was achieved while applying a constant potential of -0.75 V versus Ag/AgCl under CO -saturated conditions.
View Article and Find Full Text PDFIn the recent decade, CO has increasingly been regarded not only as a greenhouse gas but even more as a chemical feedstock for carbon-based materials. Different strategies have evolved to realize CO utilization and conversion into fuels and chemicals. In particular, biological approaches have drawn attention, as natural CO conversion serves as a model for many processes.
View Article and Find Full Text PDFWe present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO to CH with the direct injection of electrons and without the artificial addition of H or an additional carbon source except gaseous CO . This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO served as the carbon source. The methanogens used are known to perform well in anaerobic reactors and metabolize H and CO to CH and water.
View Article and Find Full Text PDFWe present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent.
View Article and Find Full Text PDFBottom- and top-contact organic thin film transistors (OTFTs) were fabricated, using poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C16) as p-type channel semiconductors. Four different types of OTFTs were fabricated and investigated as gas sensors against three volatile organic compounds, with different associated dipole moments. The OTFT-based sensor responses were evaluated with static and transient current measurements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2013
We report on the use of a polyanionic proton conductor, poly(acrylic acid), to gate a poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]-based organic field-effect transistor (OFET). A planar configuration of the OFET is evaluated, and the electrical performance and implementation on a flexible substrate are discussed.
View Article and Find Full Text PDF