Publications by authors named "Livio Trusolino"

Article Synopsis
  • * The study focuses on 231 colorectal cancer PDXs, analyzing their genetic and molecular profiles, and how they respond to the drug cetuximab, which targets EGFR in metastatic cancer.
  • * Researchers developed a predictive model named CeSta that utilizes multi-omic data from PDXs to forecast cetuximab sensitivity, demonstrating better accuracy than traditional models based on cancer cell lines and offering promise for future therapeutic biomarker identification.
View Article and Find Full Text PDF

The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids.

View Article and Find Full Text PDF
Article Synopsis
  • * The study utilized a drug repurposing strategy and conducted experiments on CRC cells and patient-derived organoids to test the effects of AT9283, a known multitargeted kinase inhibitor.
  • * Results showed that AT9283 effectively lowered MKK3 levels, inhibited cancer cell growth and motility, and was well-tolerated by normal colon cells, indicating its potential as a therapeutic option for advanced CRC by disrupting the MKK3/AURKA interaction.
View Article and Find Full Text PDF

HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network.

View Article and Find Full Text PDF

Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5 stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1 stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease.

View Article and Find Full Text PDF

Purpose: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known.

Experimental Design: Dana-Farber and Foundation Medicine Inc.

View Article and Find Full Text PDF

The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR inhibitors. Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to investigate the molecular basis of response to EGFR blockade and identify alternative drug targets to overcome resistance.

View Article and Find Full Text PDF

Background: Transcriptional classification has been used to stratify colorectal cancer (CRC) into molecular subtypes with distinct biological and clinical features. However, it is not clear whether such subtypes represent discrete, mutually exclusive entities or molecular/phenotypic states with potential overlap. Therefore, we focused on the CRC Intrinsic Subtype (CRIS) classifier and evaluated whether assigning multiple CRIS subtypes to the same sample provides additional clinically and biologically relevant information.

View Article and Find Full Text PDF

Motivation: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging.

Results: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way.

View Article and Find Full Text PDF

Making raw data available to the research community is one of the pillars of Findability, Accessibility, Interoperability, and Reuse (FAIR) research. However, the submission of raw data to public databases still involves many manually operated procedures that are intrinsically time-consuming and error-prone, which raises potential reliability issues for both the data themselves and the ensuing metadata. For example, submitting sequencing data to the European Genome-phenome Archive (EGA) is estimated to take 1 month overall, and mainly relies on a web interface for metadata management that requires manual completion of forms and the upload of several comma separated values (CSV) files, which are not structured from a formal point of view.

View Article and Find Full Text PDF

In colorectal cancer, the mechanisms underlying tumor aggressiveness require further elucidation. Taking advantage of a large panel of human metastatic colorectal cancer xenografts and matched stem-like cell cultures (m-colospheres), here we show that the overexpression of microRNA 483-3p (miRNA-483-3p; also known as MIR-483-3p), encoded by a frequently amplified gene locus, confers an aggressive phenotype. In m-colospheres, endogenous or ectopic miRNA-483-3p overexpression increased proliferative response, invasiveness, stem cell frequency, and resistance to differentiation.

View Article and Find Full Text PDF

Telomere maintenance is necessary to maintain cancer cell unlimited viability. However, the mechanisms maintaining telomere length in colorectal cancer (CRC) have not been extensively investigated. Telomere maintenance mechanisms (TMM) include the re-expression of telomerase or alternative lengthening of telomeres (ALT).

View Article and Find Full Text PDF

Purpose: Approximately 20% of patients with RAS wild-type metastatic colorectal cancer (mCRC) experience objective responses to the anti-EGFR antibody cetuximab, but disease eradication is seldom achieved. The extent of tumor shrinkage correlates with long-term outcome. We aimed to find rational combinations that potentiate cetuximab efficacy by disrupting adaptive dependencies on antiapoptotic molecules (BCL2, BCL-XL, MCL1).

View Article and Find Full Text PDF

Under the selective pressure of therapy, tumours dynamically evolve multiple adaptive mechanisms that make static interrogation of genomic alterations insufficient to guide treatment decisions. Clinical research does not enable the assessment of how various regulatory circuits in tumours are affected by therapeutic insults over time and space. Likewise, testing different precision oncology approaches informed by composite and ever-changing molecular information is hard to achieve in patients.

View Article and Find Full Text PDF

Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions.

View Article and Find Full Text PDF
Article Synopsis
  • TRF2 is a crucial protein that maintains telomere integrity and is found to be over-expressed in various human cancers, leading to tumor growth and development.
  • Recent research indicates that TRF2 also influences gene expression by regulating specific microRNAs (miRNAs), particularly focusing on miR-193b-3p, which is linked to tumor progression in colorectal cancer patients.
  • The study reveals that TRF2 interacts with the chromatin factor CTCF, enabling TRF2 to bind to a specific area that promotes miR-193b-3p expression, ultimately inhibiting the tumor suppressor SUV39H1 and contributing to cancer cell proliferation.
View Article and Find Full Text PDF

Combinations of anti-cancer drugs can overcome resistance and provide new treatments. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments.

View Article and Find Full Text PDF

Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance.

View Article and Find Full Text PDF

Purpose: Regorafenib (REG) is approved for the treatment of metastatic colorectal cancer, but has modest survival benefit and associated toxicities. Robust predictive/early response biomarkers to aid patient stratification are outstanding. We have exploited biological pathway analyses in a patient-derived xenograft (PDX) trial to study REG response mechanisms and elucidate putative biomarkers.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients' outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies.

View Article and Find Full Text PDF

Inhibitors of KRAS that bind the target in its inactive conformation and lock it in off-mode have shown early signs of clinical activity in patients with -mutant lung cancer, but responses tend to be short-lived and invariably prelude the development of acquired resistance through largely unexplored mechanisms. A new study describes the emergence of RAS-MAPK heterogeneous subclonal alterations in a patient relapsed on a KRAS inactive-state inhibitor and identifies a novel KRAS-resistant variant that is druggable by a next-generation compound capable of associating with KRAS in its active configuration..

View Article and Find Full Text PDF