The impact of nanoscale wall roughness on rarefied gas transport is widely acknowledged, yet the associated scattering dynamics largely remain elusive. In this paper, we develop a scattering kernel for surfaces having nanoscale roughness that distinctly characterizes the two major types of interactions between gas molecules and rough surfaces. Namely these are (a) the weak perturbations arising from the thermal motion of wall atoms, essentially gas-phonon collisions, which are captured by the well-established Cercignani-Lampis model, and (b) the hard collisions owing to the irregularities of the rough, static potential energy surface, which are generally described by the fully diffuse model.
View Article and Find Full Text PDFNanobubble cavitation is advancing technologies in enhanced wastewater treatment, cancer therapy and diagnosis, and microfluidic cleaning. Current macroscale models predict that nanobubble oscillations should be isothermal, yet recent studies suggest that they are adiabatic with an associated increase in natural frequency, which becomes challenging when characterizing nanobubble sizes using ultrasound in experiments. We derive a new theoretical model that considers the nonideal nature of the nanobubble's internal gas phase and nonequilibrium effects, by employing the van der Waals (vdW) equation of state and implementing a temperature jump term at the liquid-gas interface, respectively, finding excellent agreement with molecular dynamics (MD) simulations.
View Article and Find Full Text PDFRapid declines in unconventional shale production arise from the poorly understood interplay between gas transport and adsorption processes in microporous organic rock. Here, we use high-fidelity molecular dynamics (MD) simulations to resolve the time-varying adsorption of methane gas in realistic organic rock samples, known as kerogen. The kerogen samples derive from various geological shale fields with porosities ranging between 20% and 50%.
View Article and Find Full Text PDFThe collapse of cavitation bubbles often releases high-speed liquid jets capable of surface damage, with applications in drug delivery, cancer treatment, and surface cleaning. Spherical cap-shaped surface nanobubbles have previously been found to exist on immersed substrates. Despite being known nucleation sites for cavitation, their collapsing dynamics are currently unexplored.
View Article and Find Full Text PDFSurface nanobubbles have potential applications in the manipulation of nanoscale and biological materials, waste-water treatment, and surface cleaning. These spherically capped bubbles of gas can exist in stable diffusive equilibrium on chemically patterned or rough hydrophobic surfaces, under supersaturated conditions. Previous studies have investigated their long-term response to pressure variations, which is governed by the surrounding liquid's local supersaturation; however, not much is known about their short-term response to rapid pressure changes, i.
View Article and Find Full Text PDF