Publications by authors named "Livia V C Charamba"

There is growing concern about the rising levels of dissolved organic matter (DOM) in surface waters across the Northern hemisphere. However, only limited research has been conducted to unveil its precise origin. Compositional changes along terrestrial-aquatic pathways can help determine the terrestrial sources of DOM in streams.

View Article and Find Full Text PDF

The presence of antibiotic resistance in wastewater sparked a great interest in investigating the inactivation of antibiotic-resistant bacteria by disinfecting agents. In this study, the inactivation kinetics of multidrug-resistant E. coli and enterococci by an emerging environmentally-friendly disinfectant, peracetic acid (PAA), in wastewater and phosphate buffer at pH 6.

View Article and Find Full Text PDF

Advanced oxidative processes (AOP) have been consolidated as an efficient treatment technique to degrade persistent contaminants. In addition to them, biosorption also emerges as a technique capable of removing both pollutants and intermediate products generated by other treatments such as AOP. Thus, this work evaluated the degradation and removal of the mixture of dyes Direct Red 23 and Direct Red 227 in aqueous solution (50 mg·L of each).

View Article and Find Full Text PDF

The study evaluated the advanced oxidative processes concerning the degradation of green leaf and purple açaí dyes, as well as the prediction of data through artificial neural networks (ANNs). It was verified that percentage of degradation on the wavelengths (λ) of 215, 248, 523 and 627 nm was 5.95, 49.

View Article and Find Full Text PDF

In this work, the degradation of Remazol Yellow Gold RNL-150% and Reactive Turquoise Q-G125 were investigated using AOP: photolysis, UV/HO, Fenton and photo-Fenton. It was found that the photo-Fenton process employing sunlight radiation was the most efficient, obtaining percentages of degradation above 87%. The ideal conditions for the degradation of the dyes were determined from a factorial design 2 and study of the [HO] ([HO] equal to 100 mg·L); [Fe] equal to 1 mg·L and pH between 3 and 4.

View Article and Find Full Text PDF