Light-triggered carbon monoxide (CO) delivery molecules are of significant current interest for evaluating the role of CO in biology and as potential therapeutics. Herein we report the first example of a metal free CO delivery molecule that can be tracked via confocal microscopy at low micromolar concentrations in cells prior to CO release. The NEt-appended extended flavonol () localizes to the endoplasmic reticulum, mitochondria, and lysosomes.
View Article and Find Full Text PDFCarbon monoxide (CO) is a gaseous signaling molecule produced in humans via the breakdown of heme in an O-dependent reaction catalyzed by heme oxygenase enzymes. A long-lived species relative to other signaling molecules (e.g.
View Article and Find Full Text PDFCarbon monoxide (CO) is a gasotransmitter produced in humans. An essential unanswered question in the design of carbon monoxide releasing molecules (CORMs) is whether the delivery molecule should be localized extra- or intracellularly to produce desired biological effects. Herein we show that extracellular CO release is less toxic and is sufficient to produce an anti-inflammatory effect similar to that of intracellular CO release at nanomolar concentrations.
View Article and Find Full Text PDFThe delivery of controlled amounts of carbon monoxide (CO) to biological targets is of significant current interest. Very few CO-releasing compounds are currently known that can be rigorously controlled in terms of the location and amount of CO released. To address this deficiency, we report herein a new metal-free, visible-light-induced CO-releasing molecule (photoCORM) and its prodrug oxidized form, which offer new approaches to controlled, localized CO delivery.
View Article and Find Full Text PDFWhile interactions between carbon monoxide (CO) and mitochondria have been previously studied, the methods used to deliver CO (gas or CO-releasing metal carbonyl compounds) lack subcellular targeting and/or controlled delivery. Thus, the effective concentration needed to produce changes in mitochondrial bioenergetics is yet to be fully defined. To evaluate the influence of mitochondrial-targeted versus intracellularly released CO on mitochondrial oxygen consumption rates, we developed and characterized flavonol-based CO donor compounds that differ at their site of release.
View Article and Find Full Text PDFMolecular structures capable of intracellular information processing that couple responses from biomarker signals to the release of drug molecules represent intelligent delivery systems. Herein we report a chemophotonically driven, sense-of-logic carbon monoxide-releasing molecule (SL-photoCORM). This extended flavonol motif operates via an AND logic gate by first sensing the cellular environment via detection of thiols and then releasing CO when triggered with visible light and O.
View Article and Find Full Text PDF