Publications by authors named "Livia Reyes"

Volatile anesthetics are known to attenuate inflammatory response and tissue damage markers in acute organ injury. It is unclear whether these beneficial effects of volatile anesthetics are mediated by the ether basic structure or by characteristics of their halogenations. We describe in an in vitro model of acute inflammation in pulmonary cells that halogenation (fluorinated carbon groups) is responsible for the immunomodulatory effects.

View Article and Find Full Text PDF

Background: Acute lung injury is a common complication in critically ill patients. Several studies suggest that volatile anesthetics have immunomodulating effects. The aim of the current study was to assess possible postconditioning with sevoflurane in an in vivo model of endotoxin-induced lung injury.

View Article and Find Full Text PDF

Background: Acute renal failure is a frequent complication of sepsis. Hydroxyethyl starch (HES) is widely used in the treatment of such patients. However, the effect of HES on renal function during sepsis remains controversial.

View Article and Find Full Text PDF

Background: Endotoxin-induced lung injury is a useful experimental system for the characterization of immunopathologic mechanisms in acute lung injury. Although alveolar epithelial cells (AEC) are directly exposed to volatile anesthetics, there is limited information about the effect of anesthetics on these cells. In this study we investigated the effect of pretreatment with the inhaled anesthetic sevoflurane on lipopolysaccharide (LPS)-injured AEC.

View Article and Find Full Text PDF

Background: Endotoxin causes acute lung injury, which can lead to acute respiratory distress syndrome. Because local anesthetics are known to attenuate inflammatory reactions, ropivacaine was tested for its possible antiinflammatory effect in lipopolysaccharide-induced lung injury in rat alveolar epithelial cells (AECs) and rat pulmonary artery endothelial cells (RPAECs) in vitro and in vivo.

Methods: AECs and RPAECs were stimulated for 4 h with lipopolysaccharide or lipopolysaccharide and 1 mum ropivacaine.

View Article and Find Full Text PDF

Background: Early stages of diabetic nephropathy are characterized by alterations of glomerular filtration, increased tubular sodium and water reabsorption, and systemic volume expansion, which may be a major cause for the development of hypertension. As a significant fraction of renal salt and water transport is mediated by the proximal tubular Na+/H+ exchanger NHE3, we investigated its regulation in rats with STZ-induced diabetes mellitus.

Methods: Male Sprague-Dawley rats were injected +/- streptozotocin (STZ, 60 mg/kg), and sacrificed after 2, 7 or 14 days.

View Article and Find Full Text PDF

Background: Acute lung injury caused by gastric aspiration is a frequent occurrence in unconscious patients. Acute respiratory distress syndrome in association with gastric aspiration carries a mortality of up to 30% and accounts for up to 20% of deaths associated with anesthesia. Although the clinical condition is well known, knowledge about the exact inflammatory mechanisms is still incomplete.

View Article and Find Full Text PDF

Background: Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury.

Methods: Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later.

View Article and Find Full Text PDF

Albumin filtered by the glomerulus is reabsorbed in the proximal tubule. We have shown previously that proteinuria stimulates the proximal tubular Na(+)/H(+) exchanger 3 (NHE3) in rats. Activation of NHE3 may be a pathophysiologically important factor in the development of renal salt and water retention observed in the nephrotic syndrome.

View Article and Find Full Text PDF

Insulin is an important regulator of renal salt and water excretion, and hyperinsulinemia has been implicated to play a role in hypertension. One of the target proteins of insulin action in the kidney is Na(+)/H(+) exchanger 3 (NHE3), a principal Na(+) transporter responsible for salt absorption in the mammalian proximal tubule. The molecular mechanisms involved in activation of NHE3 by insulin have not been studied so far.

View Article and Find Full Text PDF