mTOR is constitutively activated in acute myeloid leukemia (AML) cells, as indicated by the phosphorylation of its substrates, 4EBP1 and P70S6K. Here, we found that quercetin (Q) and rapamycin (Rap) inhibited P70S6K phosphorylation, partially dephosphorylated 4EBP1, and activated ERK1/2 in U937 and THP1, two leukemia cell lines. ERK1/2 inhibition by U0126 induced a stronger dephosphorylation of mTORC1 substrates and activated AKT.
View Article and Find Full Text PDFColon cancer represents one of the most common and aggressive cancers in its advanced state. Among the most innovative anti-cancer approaches, the manipulation of UPR is a promising one, effective also against cancers carrying dysfunctional p53. Interestingly, it is emerging that UPR cross-talks with DDR and that targeting the interplay between these two adaptive responses may be exploited to overcome the resistance to the single DDR- and UPR-targeting treatments.
View Article and Find Full Text PDFBackground: Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune response against cancer neoantigens are based on the use of chemotherapeutics and other agents. Results are hampered by issues of efficacy, combinatorial approaches, dosing and toxicity. Here, we adopted a strategy based on the use of an immunomolecule that overcomes pharmachemical limitations.
View Article and Find Full Text PDFProgrammed death ligand 1 (PD-L1) (also called B7-H1) is a membrane immune-modulatory protein whose overexpression on the surface of tumor cells as well as APCs impairs T-cell-mediated killing. Viruses that establish chronic infections have developed a number of strategies to escape from immune recognition including the up-regulation of PD-L1. This study shows for the first time that the human oncovirus EBV infects human primary monocytes using HLA-DR and induced a strong up-regulation of PD-L1 expression on their surface.
View Article and Find Full Text PDFSensors of endoplasmic reticulum (ER) stress function in a co-ordinated manner. In the present study we investigated the relationship between IRE1α and PERK pathways and survival of ER stressed U937 cells and BC3 cells. To this end, we investigated the effects of a subcytotoxic concentration of Tunicamycin in IRE1α-proficient and in IRE1α-deficient cells, by pharmacological inhibition with 4μ8 C or down-regulation by specific siRNA.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA), a ω-3 polyunsaturated fatty acid found in fish oil, is a multi-target agent and exerts anti-inflammatory and anticancer activities alone or in combination with chemotherapies. Combinatorial anticancer therapies, which induce immunogenic apoptosis, autophagy and STAT3 inhibition have been proposed for long-term therapeutic success. Here, we found that DHA promoted immunogenic apoptosis in multiple myeloma (MM) cells, with no toxicity on PBMCs and DCs.
View Article and Find Full Text PDFType 2 is the type of diabetes with higher prevalence in contemporary time, representing about 90% of the global cases of diabetes. In the course of diabetes, several complications can occur, mostly due to hyperglycemia and increased reactive oxygen species (ROS) production. One of them is represented by an increased susceptibility to microbial infections and by a reduced capacity to clear them.
View Article and Find Full Text PDFPEL cells relay on the constitutive activation of STAT3 for their survival, thus its inhibition by AG490 leads to apoptotic cell death. In this study, we found that the cytotoxic activity of AG490 correlated with the reduction of HSP70 and its master regulator HSF1 that, based on knocking-down experiments, was found to play a pro-survival role in PEL cells. To counteract the pro-death effect mediated by HSF1/HSP70 down-regulation, AG490 induced a complete autophagy, whose inhibition potentiated its cytotoxic effect against PEL cells.
View Article and Find Full Text PDFRelative to their normal counterparts, tumor cells generally exhibit a greater "stress phenotype" and express heat shock proteins (Hsp) that represent candidate targets for anticancer therapy. Here we investigated the role of Hsp70 in survival induced by endoplasmic reticulum (ER) stressors in human leukemia U937 cells. Quercetin, a major dietary flavonoid, or specific silencing affected the expression level of Hsp70 and did not allow the upregulation of inositol-requiring kinase 1α (IRE1α), the prototype ER stress sensor regulating the unfolded protein response (UPR), that protects the cells against the stress of misfolded proteins in the ER.
View Article and Find Full Text PDFObjectives: Immunostimulation by anticancer cytotoxic drugs is needed for long-term therapeutic success. Activation of dendritic cells (DCs) is crucial to obtain effective and long-lasting anticancer T-cell mediated immunity. The aim of this study was to explore the effect of capsaicin-mediated cell death of bladder cancer cells on the activation of human monocyte-derived CD1a+ immature DCs.
View Article and Find Full Text PDFAutophagy has a pivotal role in the in-vitro monocyte differentiation into macrophages and dendritic cells (DCs), the most powerful antigen presenting cells (APC) with the unique capacity to initiate an adaptive immune response. Autophagy is also a mechanism by which these cells of innate immunity may degrade intracellular pathogens and mediate the antigen processing and presentation, essential to clear an infection. For these reasons, pathogens have learned how to manipulate autophagy for their own survival.
View Article and Find Full Text PDFOptimal tumor eradication often results from the death of malignant cells, as induced by chemotherapeutic agents, coupled to the induction of antitumor immune responses. However, cancer cells frequently become resistant to the cytotoxic activity of chemotherapy. The aim of the present study was to evaluate whether zinc dichloride (ZnCl), which was known to re-establish the chemosensitivity of cancer cells by reactivating p53, promotes immunogenic instances of cell death.
View Article and Find Full Text PDFUnderstanding the mechanisms of autophagy induction and its role during chemotherapeutic treatments is of fundamental importance in order to manipulate it to improve the outcome of chemotherapy. In particular whether the bortezomib-induced autophagy plays a pro-survival or pro-death role is still controversial. In this study we investigated if bortezomib induced endoplasmic reticulum (ER) stress and activated autophagy in Primary Effusion Lymphoma (PEL) cells and how they influenced cell survival.
View Article and Find Full Text PDFThe Na+ ionophore monensin affects cellular pH and, depending on its concentration, causes the survival or death of tumor cells. In the present study, we elucidated the survival pathway activated in U937 cells, a human lymphoma-derived cell line. These cells treated with monensin at a concentration of 5 µM were growth-arrested in G1, activated p38 mitogen-activated protein kinase (MAPK) and showed an increased expression of cyclooxygenase-2 (COX-2).
View Article and Find Full Text PDFCa(2+)influx might occur through K(+)-dependent Na(+)/Ca(2+) exchanger operating in reverse mode (rNCKX). In a cellular model different from platelets, an interaction between canonical transient receptor potential cation (TRPC) channels and NCX has been found. The aim of this study was to verify whether the TRPC/NCKX interaction operates in human platelets.
View Article and Find Full Text PDFA growing number of studies indicate that cell death can be either immunogenic or not, depending on its modalities, the type and the activation state of the cells, and finally, the environment where it happens. Increased understanding of the immunogenicity of cancer cell death will significantly improve the outcome of chemotherapeutic treatments.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
November 2012
Background: Epidemiological studies revealed significantly lower mortality rates in cancer patients receiving cardiac glycosides, which turned on interest in the anticancer properties of these drugs. However, cardiac glycosides have also been shown to stimulate cell growth in several cell types. In the present investigation we analyzed the pro-death and pro-survival properties of ouabain in the human lymphoma derived cell line U937.
View Article and Find Full Text PDFBackground: Homeodomain-interacting protein kinase 2 (HIPK2) is a multifunctional protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. For instance, HIPK2 knockdown induces upregulation of oncogenic hypoxia-inducible factor-1 (HIF-1) activity leading to a constitutive hypoxic and angiogenic phenotype with increased tumor growth in vivo. HIPK2 inhibition, therefore, releases pathways leading to production of pro-inflammatory molecules such as vascular endothelial growth factor (VEGF) or prostaglandin E2 (PGE(2)).
View Article and Find Full Text PDFTo understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation.
View Article and Find Full Text PDFWe have shown that Epstein-Barr virus (EBV) lytic cycle activation in Burkitt's lymphoma (BL) cells down-regulates chymotrypsin- and caspase-like activities of the proteasome. The aim of the present study was to evaluate whether EBV activation might also affect proteasome subunit composition. Our results indicate that, independently of the latency program established in the host cells, induction of the EBV lytic cycle reduces the expression of the proteasomal components β5, β1 and β2i, whereas it increases that of β2, β1i, PA28α and PA28β.
View Article and Find Full Text PDFAims: Although aspirin treatment is useful in reducing ischaemic events in diabetic patients, recent studies suggest that it is less effective when compared with non-diabetics (ND). We sought to evaluate COX-1 sensitivity and thromboxane A(2) (TxA(2)) production in type 1 (T1DM) and type 2 diabetic (T2DM) patients under chronic aspirin treatment, and also evaluate the association between thromboxane A(2) (TxA(2)) production and markers of inflammation and metabolic control, such as high-sensitivity C-reactive protein, fasting blood glucose, and haemoglobin A1c (HbA1c).
Methods And Results: Agonist-induced platelet aggregation (PA) and TxB(2), a stable metabolite of TxA(2), production, serum TxB(2), and platelet COX-1 and COX-2 expression were studied in T2DM patients, T1DM patients, and high-risk ND subjects, all receiving a low dose of aspirin.
Background: EBV lytic cycle activators, such as phorbol esters, anti-immunoglobulin, transforming growth factor beta (TGFbeta), sodium butyrate, induce apoptosis in EBV-negative but not in EBV-positive Burkitt's lymphoma (BL) cells. To investigate the molecular mechanisms allowing EBV-infected cells to be protected, we examined the expression of viral and cellular antiapoptotic proteins as well as the activation of signal transduction pathways in BL-derived Raji cells exposed to lytic cycle inducing agents.
Results: Our data show that, following EBV activation, the latent membrane protein 1 (LMP1) and the cellular anti-apoptotic proteins MCL-1 and BCL-2 were quickly up-regulated and that Raji cells remained viable even when exposed simultaneously to P(BU)(2), sodium butyrate and TGFbeta.
Introduction: There is emerging evidence of a considerable variability of the impact of aspirin on clinical outcome and laboratory findings. Persistent TxA2 production seems to be the most likely reason. Aim of this study was to determine whether the mechanism responsible for TxA2 persistent production is, at least partially, dependent upon aspirin-insensitive platelet COX-2 enzymatic pathway.
View Article and Find Full Text PDF