Publications by authors named "Livia Carrascal"

Introduction: Neural stem cells from the subventricular zone (SVZ) neurogenic niche provide neurons that integrate in the olfactory bulb circuitry. However, in response to cortical injuries, the neurogenic activity of the SVZ is significantly altered, leading to increased number of neuroblasts with a modified migration pattern that leads cells towards the site of injury. Despite the increased neurogenesis and migration, many newly generated neurons fail to survive or functionally integrate into the cortical circuitry.

View Article and Find Full Text PDF

Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by gradually progressive, selective loss of anatomically or physiologically related neuronal systems that produce brain damage from which there is no recovery. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear to be similar, suggesting common neurodegenerative pathways. It is well known that oxidative stress and the production of reactive oxygen radicals plays a key role in neuronal cell damage.

View Article and Find Full Text PDF

Neuroinflammation underlies neurodegenerative diseases. Herein, we test whether acute colon inflammation activates microglia and astrocytes, induces neuroinflammation, disturbs neuron intrinsic electrical properties in the primary motor cortex, and alters motor behaviors. We used a rat model of acute colon inflammation induced by dextran sulfate sodium.

View Article and Find Full Text PDF

Achieving the distinctive complex behaviors of adult mammals requires the development of a great variety of specialized neural circuits. Although the development of these circuits begins during the embryonic stage, they remain immature at birth, requiring a postnatal maturation process to achieve these complex tasks. Understanding how the neuronal membrane properties and circuits change during development is the first step to understand their transition into efficient ones.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common form of brain tumor characterized by its resistance to conventional therapies, including temozolomide, the most widely used chemotherapeutic agent in the treatment of GBM. Within the tumor, the presence of glioma stem cells (GSC) seems to be the reason for drug resistance. The discovery of GSC has boosted the search for new experimental models to study GBM, which allow the development of new GBM treatments targeting these cells.

View Article and Find Full Text PDF

Oxidative stress is one of the main proposed mechanisms involved in neuronal degeneration. To evaluate the consequences of oxidative stress on motor cortex pyramidal neurons during postnatal development, rats were classified into three groups: Newborn (P2-P7); infantile (P11-P15); and young adult (P20-P40). Oxidative stress was induced by 10 µM of cumene hydroperoxide (CH) application.

View Article and Find Full Text PDF

Hippocampal neurogenesis has widely been linked to memory and learning performance. New neurons generated from neural stem cells (NSC) within the dentate gyrus of the hippocampus (DG) integrate in hippocampal circuitry participating in memory tasks. Several neurological and neuropsychiatric disorders show cognitive impairment together with a reduction in DG neurogenesis.

View Article and Find Full Text PDF

Vitamin D is an essential fat-soluble vitamin that participates in several homeostatic functions in mammalian organisms. Lower levels of vitamin D are produced in the older population, vitamin D deficiency being an accelerating factor for the progression of the aging process. In this review, we focus on the effect that vitamin D exerts in the aged brain paying special attention to the neurogenic process.

View Article and Find Full Text PDF

Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration.

View Article and Find Full Text PDF

Melatonin is an indolamine synthesized and secreted by the pineal gland along with other extrapineal sources including immune system cells, the brain, skin and the gastrointestinal tract. Growing interest in this compound as a potential therapeutic agent in several diseases stems from its pleiotropic effects. Thus, melatonin plays a key role in various physiological activities that include regulation of circadian rhythms, immune responses, the oxidative process, apoptosis or mitochondrial homeostasis.

View Article and Find Full Text PDF

The neuronal input-output function depends on recruitment threshold and gain of the firing frequency-current (f-I) relationship. These two parameters are positively correlated in ocular motoneurons (MNs) recorded in alert preparation and inhibitory inputs could contribute to this correlation. Phasic inhibition mediated by γ-amino butyric acid (GABA) occurs when a high concentration of GABA at the synaptic cleft activates postsynaptic GABAA receptors, allowing neuronal information transfer.

View Article and Find Full Text PDF

Studies in alert preparations have demonstrated that ocular motoneurons exhibit a phasic–tonic firing rate related to eye velocity and position, respectively. The slopes of these relationships are higher in motoneurons with higher recruitment threshold and have been proposed to depend upon synaptic input. To investigate this hypothesis, motoneurons of the rat oculomotor nucleus were recorded in a brain slice preparation in control conditions and during glutamate (5 μm) application to the bath.

View Article and Find Full Text PDF

The size principle dictates the orderly recruitment of motoneurons (Mns). This principle assumes that Mns of different sizes have a similar voltage threshold, cell size being the crucial property in determining neuronal recruitment. Thus, smaller neurons have higher membrane resistance and require a lower depolarizing current to reach spike threshold.

View Article and Find Full Text PDF

The mammalian oculomotor nucleus receives a strong γ-aminobutyric acid (GABA)ergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column.

View Article and Find Full Text PDF

This work investigates the somatodendritic shaping of rat oculomotor nucleus motoneurons (Mns) during postnatal development. The Mns were functionally identified in slice preparation, intracellularly injected with neurobiotin, and three-dimensionally reconstructed. Most of the Mns (approximately 85%) were multipolar and the rest (approximately 15%) bipolar.

View Article and Find Full Text PDF

Above recruitment threshold, ocular motoneurons (Mns) show a firing rate linearly related with eye position. Current hypothesis suggests that synaptic inputs are determinant for establishing the recruitment threshold and firing rate gain in these Mns. We investigated this proposal by studying the cholinergic modulation in oculomotor nucleus Mns by intracellular recordings in rat brain slice preparation.

View Article and Find Full Text PDF

Alert-chronic studies show that ocular motoneurons (Mns) exhibit a phasic and tonic firing correlated with eye saccade-velocity and position (fixation), respectively. Differences in the phasic and tonic firing among Mns depend on synaptic inputs and/or the intrinsic membrane properties. We have used in vitro slice preparation to investigate the contribution of membrane properties to firing properties of Wistar rat oculomotor nucleus Mns.

View Article and Find Full Text PDF

The postnatal maturation of rat brainstem (oculomotor and hypoglossal nuclei) and spinal motoneurons, based on data collected from in vitro studies, is reviewed here. Membrane input resistance diminishes with age, but to a greater extent for hypoglossal than for oculomotor motoneurons. The time constant of the membrane diminishes with age in a similar fashion for both oculomotor and hypoglossal motoneurons.

View Article and Find Full Text PDF