J Biomed Mater Res B Appl Biomater
July 2019
The aim of the study was to evaluate the effect of experimental composites containing dicalcium phosphate dihydrate (DCPD) on remineralization of enamel lesions. Five resin-based composites containing equal parts (in mols) of bisphenol-A glycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), and 60 vol % of fillers were manipulated. Filler phase was constituted by silanized barium glass and 0, 10, or 20 vol % of DPCD particles, either functionalized (F) or nonfunctionalized (NF) with TEGDMA.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2019
This study describes the synthesis of dicalcium phosphate dihydrate (DCPD) particles in the presence of different ethylene glycol dimethacrylates (EGDMA, ethylene glycol/EG units: 1, 2, 3 or 4) at two monomer-to-ammonium phosphate molar ratios (1:1 and 2:1), as a strategy to develop CaP-monomer particles with improved interaction with resin matrices. Particles displaying high surface areas and organic contents were added to a photocurable BisGMA-TEGDMA resin and the resulting materials were tested for degree of conversion (DC), biaxial flexural strength (BFS), flexural modulus, and ion release. Data were subjected to one-way ANOVA or Kruskal-Wallis/Dunn test (alpha: 0.
View Article and Find Full Text PDFObjective: to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites.
Methods: Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD.
Objectives: This study describes the synthesis of brushite nanoparticles (CaHPO·2HO) functionalized with triethylene glycol dimethacrylate (TEGDMA) and their application in dental restorative composites with remineralizing capabilities.
Methods: Nanoparticles were synthesized, with TEGDMA being added to one of the precursor solutions at three different molar ratios (0:1, 0.5:1 and 1:1, in relation to the ammonium phosphate precursor).
Clinical trials have identified secondary caries and bulk fracture as the main causes for composite restoration failure. As a measure to avoid frequent reinterventions for restoration replacement, composites with some sort of defense mechanism against biofilm formation and demineralization, as well as materials with lower susceptibility to crack propagation are necessary. Also, the restorative procedure with composites are very time-consuming and technically demanding, particularly concerning the application of the adhesive system.
View Article and Find Full Text PDFSilver phosphate is a semi-conductor sensitive to UV-Vis radiation (<530nm). Exposure to radiation removes electrons from the oxygen valence shell, which are scavenged by silver cations (Ag), forming metallic silver (Ag) nanoparticles. The possibility of silver nanoparticle formation in situ by a photoreduction process was the basis for the application of mixed calcium phosphate/silver phosphate particles as remineralizing and antibacterial fillers in resin-based dental materials.
View Article and Find Full Text PDFObjective: To test the null hypotheses that (1) the replacement of particles by short fibers does not affect polymerization stress (PS), flexural modulus (FM) or volumetric shrinkage (VS) of experimental composites and (2) PS is not affected by specimen thickness.
Methods: Three experimental composites were prepared, each containing similar mass fractions of BisGMA and TEGDMA and 60 vol% of fillers, being 0%, 3% or 6% constituted by 1.6-mm long glass fibers and the remaining by 1μm glass particles.
J Biomed Mater Res B Appl Biomater
November 2015
The study compared ion release from resin-based materials containing calcium orthophosphates. Amorphous calcium phosphate (ACP), dicalcium phosphate anhydrous (DCPA), dicalcium phosphate dihydrate (DCPD), and tricalcium phosphate (β-TCP) nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and surface area (nitrogen adsorption isotherms, BET method). Nanoparticles were added to a dimethacrylate-based resin and materials were tested for degree of conversion (DC) and calcium/phosphate release up to 28 days under pH 5.
View Article and Find Full Text PDF