Background: Diverse gene dosage disorders (GDDs) increase risk for psychiatric impairment, but characterization of GDD effects on the human brain has so far been piecemeal, with few simultaneous analyses of multiple brain features across different GDDs.
Methods: Here, through multimodal neuroimaging of 3 aneuploidy syndromes (XXY [total n = 191, 92 control participants], XYY [total n = 81, 47 control participants], and trisomy 21 [total n = 69, 41 control participants]), we systematically mapped the effects of supernumerary X, Y, and chromosome 21 dosage across a breadth of 15 different macrostructural, microstructural, and functional imaging-derived phenotypes (IDPs).
Results: The results revealed considerable diversity in cortical changes across GDDs and IDPs.
Proc Natl Acad Sci U S A
May 2023
Aneuploidy syndromes impact multiple organ systems but understanding of tissue-specific aneuploidy effects remains limited-especially for the comparison between peripheral tissues and relatively inaccessible tissues like brain. Here, we address this gap in knowledge by studying the transcriptomic effects of chromosome X, Y, and 21 aneuploidies in lymphoblastoid cell lines, fibroblasts and iPSC-derived neuronal cells (LCLs, FCL, and iNs, respectively). We root our analyses in sex chromosome aneuploidies, which offer a uniquely wide karyotype range for dosage effect analysis.
View Article and Find Full Text PDFBackground: Recurrent gene dosage disorders impart substantial risk for psychopathology. Yet, understanding that risk is hampered by complex presentations that challenge classical diagnostic systems. Here, we present a suite of generalizable analytic approaches for parsing this clinical complexity, which we illustrate through application to XYY syndrome.
View Article and Find Full Text PDFAll eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) versus XY controls.
View Article and Find Full Text PDFStudies of resting-state functional connectivity in young people with Down syndrome (DS) have yielded conflicting results. Some studies have found increased connectivity while others have found a mix of increased and decreased connectivity. No studies have examined whole-brain connectivity at the voxel level in youth with DS during an eyes-open resting-state design.
View Article and Find Full Text PDFGene dosage disorders (GDDs) constitute a major class of genetic risks for psychopathology, but there is considerable debate regarding the extent to which different GDDs induce different psychopathology profiles. The current research speaks to this debate by compiling and analyzing dimensional measures of several autism-related traits (ARTs) across seven diverse GDDs. The sample included 350 individuals with one of 7 GDDs, as well as reference idiopathic autism spectrum disorder (ASD; n = 74) and typically developing control (TD; n = 171) groups.
View Article and Find Full Text PDFMen and women tend to differ in the age of first alcohol consumption, transition into disordered drinking, and the prevalence of alcohol use disorder. Here, we use a unique longitudinal dataset to test for potentially predispositonal sex-biases in brain organization prior to initial alcohol exposure. Our study combines measures of subcortical morphometry gathered in alcohol naive individuals during childhood (mean age: 9.
View Article and Find Full Text PDFSex chromosome aneuploidies, a group of neurogenetic conditions characterized by aberrant sex chromosome dosage (SCD), are associated with increased risks for psychopathology as well as alterations in gray matter structure. However, we still lack a comprehensive understanding of potential SCD-associated changes in white matter structure, or knowledge of how these changes might relate to known alterations in gray matter anatomy. Thus, here, we use voxel-based morphometry on structural neuroimaging data to provide the first comprehensive maps of regional white matter volume (WMV) changes across individuals with varying SCD (n = 306).
View Article and Find Full Text PDFKlinefelter syndrome (47, XXY; henceforth: XXY syndrome) is a high-impact but poorly understood genetic risk factor for neuropsychiatric impairment. Here, we provide the first study to map alterations of functional brain connectivity in XXY syndrome and relate these changes to brain anatomy and psychopathology. We used resting-state functional magnetic resonance imaging data from 75 individuals with XXY and 84 healthy XY males to 1) implement a brain-wide screen for altered global resting-state functional connectivity (rsFC) in XXY versus XY males and 2) decompose these alterations through seed-based analysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
Brain structural covariance norms capture the coordination of neurodevelopmental programs between different brain regions. We develop and apply anatomical imbalance mapping (AIM), a method to measure and model individual deviations from these norms, to provide a lifespan map of morphological integration in the human cortex. In cross-sectional and longitudinal data, analysis of whole-brain average anatomical imbalance reveals a reproducible tightening of structural covariance by age 25 y, which loosens after the seventh decade of life.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFHumans display reproducible sex differences in cognition and behavior, which may partly reflect intrinsic sex differences in regional brain organization. However, the consistency, causes and consequences of sex differences in the human brain are poorly characterized and hotly debated. In contrast, recent studies in mice-a major model organism for studying neurobiological sex differences-have established: 1) highly consistent sex biases in regional gray matter volume (GMV) involving the cortex and classical subcortical foci, 2) a preponderance of regional GMV sex differences in brain circuits for social and reproductive behavior, and 3) a spatial coupling between regional GMV sex biases and brain expression of sex chromosome genes in adulthood.
View Article and Find Full Text PDFNeurodevelopmental disorders have a heritable component and are associated with region specific alterations in brain anatomy. However, it is unclear how genetic risks for neurodevelopmental disorders are translated into spatially patterned brain vulnerabilities. Here, we integrated cortical neuroimaging data from patients with neurodevelopmental disorders caused by genomic copy number variations (CNVs) and gene expression data from healthy subjects.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
June 2020
Sex chromosome aneuploidy (SCA) increases the risk for cognitive deficits, and confers changes in regional cortical thickness (CT) and surface area (SA). Neuroanatomical correlates of inter-individual variation in cognitive ability have been described in health, but are not well-characterized in SCA. Here, we modeled relationships between general cognitive ability (estimated using full-scale IQ [FSIQ] from Wechsler scales) and regional estimates of SA and CT (from structural MRI scans) in both aneuploid (28 XXX, 55 XXY, 22 XYY, 19 XXYY) and typically-developing euploid (79 XX, 85 XY) individuals.
View Article and Find Full Text PDFQuantitative magnetic resonance imaging (MRI) investigations of brain anatomy in children and young adults with Down syndrome (DS) are limited, with no diffusion tensor imaging (DTI) studies covering that age range. We used DTI-driven tensor based morphometry (DTBM), a novel technique that extracts morphometric information from diffusion data, to investigate brain anatomy in 15 participants with DS and 15 age- and sex-matched typically developing (TD) controls, ages 6-24 years (mean age ~17 years). DTBM revealed marked hypoplasia of cerebellar afferent systems in DS, including fronto-pontine (middle cerebellar peduncle) and olivo-cerebellar (inferior cerebellar peduncle) connections.
View Article and Find Full Text PDFBackground: Down syndrome is associated with poor sleep but little is known about its neural correlates.
Aims: The current research compared brain morphometry in youth with Down syndrome with parent-reported sleep problems (DS-S) to peers with Down syndrome (DS) and typical development (TD) without parent-reported sleep problems matched on age (M = 15.15) and sex ratio (62 % female).
Language and executive functioning are major impairments in many neurodevelopmental disorders, but little is known about the relations between these constructs, particularly using parent-report. Thus, the current research sought to examine relations between executive function and language in two groups - Down syndrome (DS; n=41; M = 11.2) and autism spectrum disorder (ASD; n=91; M = 7.
View Article and Find Full Text PDFSex chromosome dosage (SCD) variation increases risk for neuropsychiatric impairment, which may reflect direct SCD effects on brain organization. Here, we 1) map cumulative X- and Y-chromosome dosage effects on regional cortical thickness (CT) and investigate potential functional implications of these effects using Neurosynth, 2) test if this map is organized by patterns of CT covariance that are evident in health, and 3) characterize SCD effects on CT covariance itself. We modeled SCD effects on CT and CT covariance for 308 equally sized regions of the cortical sheet using structural neuroimaging data from 301 individuals with varying numbers of sex chromosomes (169 euploid, 132 aneuploid).
View Article and Find Full Text PDFThe amygdala and hippocampus are two adjacent allocortical structures implicated in sex-biased and developmentally-emergent psychopathology. However, the spatiotemporal dynamics of amygdalo-hippocampal development remain poorly understood in healthy humans. The current study defined trajectories of volume and shape change for the amygdala and hippocampus by applying a multi-atlas segmentation pipeline (MAGeT-Brain) and semi-parametric mixed-effects spline modeling to 1,529 longitudinally-acquired structural MRI brain scans from a large, single-center cohort of 792 youth (403 males, 389 females) between the ages of 5 and 25 years old.
View Article and Find Full Text PDFThe genetics of cortical arealization in youth is not well understood. In this study, we use a genetically informative sample of 677 typically developing children and adolescents (mean age 12.72 years), high-resolution MRI, and quantitative genetic methodology to address several fundamental questions on the genetics of cerebral surface area.
View Article and Find Full Text PDFThe neural substrates of intelligence represent a fundamental but largely uncharted topic in human developmental neuroscience. Prior neuroimaging studies have identified modest but highly dynamic associations between intelligence and cortical thickness (CT) in childhood and adolescence. In a separate thread of research, quantitative genetic studies have repeatedly demonstrated that most measures of intelligence are highly heritable, as are many brain regions associated with intelligence.
View Article and Find Full Text PDFSex chromosome aneuploidy (SCA) increases risk for several psychiatric disorders associated with the limbic system, including mood and autism spectrum disorders. Thus, SCA offers a genetics-first model for understanding the biological basis of psychopathology. Additionally, the sex-biased prevalence of many psychiatric disorders could potentially reflect sex chromosome dosage effects on brain development.
View Article and Find Full Text PDFChildhood socioeconomic status (SES) impacts cognitive development and mental health, but its association with human structural brain development is not yet well characterized. Here, we analyzed 1243 longitudinally acquired structural MRI scans from 623 youth (299 female/324 male) to investigate the relation between SES and cortical and subcortical morphology between ages 5 and 25 years. We found positive associations between SES and total volumes of the brain, cortical sheet, and four separate subcortical structures.
View Article and Find Full Text PDFObjectives: Past research suggests that youth with sex chromosome aneuploidies (SCAs) present with verbal fluency deficits. However, most studies have focused on sex chromosome trisomies. Far less is known about sex chromosome tetrasomies and pentasomies.
View Article and Find Full Text PDF