Publications by authors named "Liuying Jiao"

Article Synopsis
  • The study focuses on creating porphyrin-based nanohoops, rings, and cages, which are difficult to synthesize but have desirable properties.
  • The authors describe a template-free method to synthesize a unique bithiophene-bridged porphyrin cyclophane, revealing its strained structure and electronic characteristics through X-ray analysis.
  • The resulting compounds exhibit interesting aromatic properties and reactivity, with the dication being globally aromatic and able to relieve strain through nucleophilic addition with chloride.
View Article and Find Full Text PDF

π-Conjugated chiral shape-persistent molecular nanocarbons hold great potential as chiroptical materials, though their synthesis remains a considerable challenge. Here, we present a simple approach using Suzuki coupling of a [5]helicene building block with various aromatic units, enabling the one-pot synthesis of a series of chiral macrocycles with persistent figure-eight and Möbius shapes. Single-crystal structures of 7 compounds were solved, and 22 enantiomers were separated by preparative chiral HPLC.

View Article and Find Full Text PDF

-acenes are valuable models for zigzag-edged graphene nanoribbons, but their synthesis poses significant challenges. In this study, stable derivatives of -pentacene () and -hexacene () were synthesized. Through kinetic blocking and a synergistic captodative effect, both compounds displayed remarkable stability under ambient air and light conditions.

View Article and Find Full Text PDF

Graphene-like molecules with multiple zigzag edges are emerging as promising gain materials for organic lasers. Their emission wavelengths can vary widely, ranging from visible to near-infrared (NIR), as the molecular size increases. Specifically, rhombus-shaped molecular graphenes with two pairs of parallel zigzag edges, known as [n]rhombenes, are excellent candidates for NIR lasers due to their small energy gaps.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) with a one-dimensional (1D), ribbon-like structure have the potential to serve as both model compounds for corresponding graphene nanoribbons (GNRs) and as materials for optoelectronics applications. However, synthesizing molecules of this type with extended π-conjugation presents a significant challenge. In this study, we present a straightforward synthetic method for a series of bis-peri-dinaphtho-rylene molecules, wherein the peri-positions of perylene, quaterrylene, and hexarylene are fused with naphtho-units.

View Article and Find Full Text PDF