Publications by authors named "Liuye Yang"

Sepsis, a life-threatening condition characterized by dysregulated immune responses, remains a significant clinical challenge. Myricanol, a natural compound, plays a variety of roles in regulating lipid metabolism, anti-cancer, anti-neurodegeneration, and it could act as an Sirtuin 1 (SIRT1) activator. This study aimed to explore the therapeutic potential and underlying mechanism of myricanol in the lipopolysaccharide (LPS)-induced sepsis model.

View Article and Find Full Text PDF

Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry.

View Article and Find Full Text PDF

Obesity, as a worldwide healthcare problem, has attracted more and more attention. Here we identify a long non-coding RNA NRON, which is highly conserved across species, as an important regulator of glucose/lipid metabolism and whole-body energy expenditure. Depletion of Nron leads to metabolic benefits in DIO (diet-induced obesity) mice, including reduced body weight and fat mass, improved insulin sensitivity and serum lipid parameters, attenuated hepatic steatosis and enhanced adipose function.

View Article and Find Full Text PDF

This study aimed to evaluate the antibacterial activity of isopropoxy benzene guanidine (IBG) against based on pharmacokinetics/pharmacodynamics (PK/PD) modeling in broilers. The PK parameters of IBG in the plasma and ileal content of -infected broilers following oral administration at 2, 30, and 60 mg/kg body weight were investigated. PD studies were conducted over oral administration ranging from 2 to 60 mg/kg and repeated every 12 h for 3 days.

View Article and Find Full Text PDF

Endothelial cells (ECs) are vital regulators of inflammatory processes, there is the potential for inhibition of EC inflammation to be a therapeutic target in chronic inflammatory diseases. This study aimed to investigate the effect of 7-methoxyisoflavone (7-Mif) on endothelial inflammation. Our results showed that 7-Mif have no cytotoxicity on HUVECs.

View Article and Find Full Text PDF

Isopropoxy benzene guanidine (IBG) is a novel substituted benzene guanidine analogue with antibacterial activity against multidrug-resistant bacteria. However, the bioavailability of IBG is not optimal due to its finite aqueous solubility, thus hampering its potential therapeutic exploitation. In this study, we prepared IBG/hydroxypropyl-β-CD (IBG/HP-β-CD) complex, and characterized it by differential scanning calorimetry, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopy.

View Article and Find Full Text PDF

Plasmid-borne colistin resistance mediated by is a growing problem, which poses a serious challenge to the clinical application of colistin for Gram-negative bacterial infections. Drug combination is one of the effective strategies to treat colistin-resistant bacteria. Here, we found a guanidine compound, namely, isopropoxy benzene guanidine (IBG), which boosted the efficacy of colistin against -positive .

View Article and Find Full Text PDF

Doxorubicin (DOX), a commonly used antitumor agent, is often accompanied by its dosage-dependent cardiotoxicity, which incorporates ferroptosis in its pathogenesis. Protein arginine methyltransferase 4 (PRMT4) is a transcription regulator involved in the modulation of oxidative stress and autophagy, but its role in DOX-induced cardiomyopathy (DIC) and ferroptosis remains elusive. Herein, we aimed to investigate the involvement and the underlying mechanisms of PRMT4 in the pathogenesis of DIC.

View Article and Find Full Text PDF

The major clinical consequences of atherosclerosis such as myocardial infarction or stroke are because of thrombotic events associated with acute rupture or erosion of an unstable plaque. Here, we identify an lncRNA Noncoding Repressor of NFAT (Nron) as a critical regulator of atherosclerotic plaque stability. Nron overexpression (OE) in vascular smooth muscle cells (VSMC) induces a highly characteristic architecture of more-vulnerable plaques, while Nron knockdown (KD) suppresses the development of atherosclerosis and favors plaque stability.

View Article and Find Full Text PDF

Deciphering the molecular and cellular processes involved in foam cell formation is critical for us to understand the pathogenesis of atherosclerosis. Nuclear factor of activated T cells (NFAT) is a transcription factor originally identified as a key player in the differentiation of T cells and maturation of immune system. Nowadays it has been brought into attention that NFAT also regulates multiple pathophysiological processes and targeted intervention in NFAT may be effective in the treatment of some cardiovascular diseases.

View Article and Find Full Text PDF

Sleep problems have been demonstrated to cause mental symptoms, such as anxiety. However, research on the association of the night sleep duration and sleep initiation time on anxiety symptoms in rural China is still lacking. The current study, therefore, explored the independent and combined association of the night sleep duration and sleep initiation time on anxiety symptoms.

View Article and Find Full Text PDF

Objective: Coal miners are exposed to polycyclic aromatic hydrocarbons (PAHs), a group of neurotoxicants formed and released during incomplete combustion of coal. High levels of anxiety and depression have been reported in coal miners, but little is known about neurobehavioral functions in populations that are occupationally exposed to PAHs. We tested neurobehavioral performance in coal miners and correlated it with levels of urinary markers of PAH exposure.

View Article and Find Full Text PDF