Background: B lymphocytes, essential in cellular immunity as antigen-presenting cells and in humoral immunity as major effector cells, play a crucial role in the antitumor response. Our previous work has shown β-glucan enhanced immunoglobulins (Ig) secretion. But the specific mechanisms of B-cell activation with β-glucan are poorly understood.
View Article and Find Full Text PDFThe introduction of alien species poses a serious threat to native biodiversity, and mountain lake systems in the southwest of China are particularly vulnerable to the introduction of non-native fish. The prey naivety hypothesis states that native species may not be able to recognize novel introduced species due to a lack of common evolutionary background and therefore become easy targets, so the impacts of non-native fish on mountain endemic amphibians need to be urgently assessed. In an ex-situ experiment, we exposed the tadpoles of the Chaochiao Brown Frog (), endemic to western China, to kairomones of both native and translocated fish species, and their phenotypic and genetic response patterns were compared.
View Article and Find Full Text PDFDrug delivery technologies that could convert promising therapeutics into successful therapies have been under broad research for many years. Recently, β-glucans, natural-occurring polysaccharides extracted from many organism species such as yeast, fungi and bacteria, have attracted increasing attention to serve as drug delivery carriers. With their unique structure and innate immunocompetence, β-glucans are considered as promising carriers for targeting delivery especially when applied in the vaccine construction and oral administration of therapeutic agents.
View Article and Find Full Text PDFA new species, W.B.Ju, L.
View Article and Find Full Text PDFAdvanced oxidation processes (AOPs) based on peracetic acid (PAA) has been extensively concerned for the degradation of organic pollutants. In this study, metallic iron-modified sludge biochar (Fe-SBC) was employed to activate PAA for the removal of sulfamethoxazole (SMX). The characterization results indicated that FeO and FeO were successfully loaded on the surface of the sludge biochar (SBC).
View Article and Find Full Text PDFClin Exp Immunol
December 2023
As the largest proportion of myeloid immune cells in tumors, macrophages play an important role in tumor growth and regression according to their different phenotypes, thus reprogramming macrophages has become a new research direction for cancer immunotherapy. Yeast-derived whole β-glucan particles (WGPs) can induce M0 macrophages to differentiate into M1 macrophages and convert M2 macrophages and tumor-associated macrophages (TAMs) into M1 macrophages. In vitro, studies have confirmed that WGP-treated macrophages increase the activating receptors in natural killer cells (NK cells) and enhance the cytotoxicity of NK cells.
View Article and Find Full Text PDFThere is an increasing trend in semi-artificial photosynthesis systems that combine living cells with inorganic semiconductors to activate a bacterial catalytic network. However, these systems face various challenges, including electron-hole recombination, photocorrosion, and the generation of photoexcited radicals by semiconductors, all of which impair the efficiency, stability, and sustainability of biohybrids. We first focus on a reverse strategy to improve highly efficient CO photoreduction on biosynthesized inorganic semiconductors using an electron conduit in the electroactive bacterium MR-1.
View Article and Find Full Text PDFIn this study, a novel magnetic poly (tetrafluoroethylene, PTFE) (Fe@PTFE) piezoelectric catalytic material was successfully prepared by a simple ball milling treatment. The prepared piezoelectric catalytic material Fe@PTFE exhibited excellent catalytic performance under the activation of ultrasonic (US) and realized the efficient degradation of imidacloprid (IMI) at low concentrations in an aqueous environment. It was demonstrated by various characterization methods that Fe was successfully loaded onto PTFE particles (1-15 μm) by ball milling.
View Article and Find Full Text PDFPerfluorobutane sulfonate (PFBS) is considered to be a promising alternative of perfluorooctane sulfonates (PFOS), while it is also hazardous. The UV/S (Ⅳ) system has been confirmed to be effective for PFOS removal from water, while it is inefficient for PFBS decomposition. A hybrid vacuum-ultraviolet (VUV)/S (Ⅳ)/KI process was investigated for the degradation of PFBS in aqueous solution.
View Article and Find Full Text PDFHighly efficient and stable heterogeneous catalysts were desired to activate periodate (PI) for sustainable pollution control. Herein, iron-nitrogen-carbon catalyst was synthesized using a facile molten-salts mediated pyrolysis strategy (denoted as FeNC-MS) and employed to activate PI for the degradation of acetaminophen (ACE). Compared with iron-nitrogen-carbon catalyst prepared by direct pyrolysis method (marked as FeNC), FeNC-MS exhibited superior catalytic activity due to its large specific surface area (1600 m g) and the abundance of FeN sites.
View Article and Find Full Text PDFManganese oxide-activated persulfate plays a critical role in water purification and in situ chemical oxidation processes, but the underlying mechanism needs to be further revealed. Herein, the detailed mechanism of MnO with various crystallographic structures (α-, β-, γ-, and δ-MnO) towards peroxymonosulfate (PMS) activation was investigated. PMS activated by tunnel structured α-, β-, and γ-MnO showed higher acetaminophen (ACE) removal than layer structured δ-MnO with the removal efficiency following an order of α-MnO (85%) ≈ γ-MnO (84%) > β-MnO (65%) > δ-MnO (31%).
View Article and Find Full Text PDFIn this study, a novel heterogeneous ultrasonic (US)-enhanced sludge biochar (SBC) activated periodate (PI) system was established and explored for the rapid removal of levofloxacin in the aqueous environment. This study focused on the mechanisms of US-enhanced SBC co-activation of PI for levofloxacin degradation. The results indicated that US and SBC exhibited a remarkable synergistic reinforcing activation effect on PI compared to single PI activation systems.
View Article and Find Full Text PDFCancer Immunol Immunother
August 2022
Although therapeutic cancer vaccines have been gaining substantial ground, the development of cancer vaccines is impeded because of the undegradability of delivery systems, ineffective delivery of tumor antigens and weak immunogenicity of adjuvants. Here, we made use of a whole glucan particle (WGP) to encapsulate ovalbumin (OVA), thereby formulating a novel cancer vaccine. Results from in vitro experiments showed that WGP-OVA not only induced the activation of bone marrow-derived macrophages (BMDMs) including driving M0 BMDM polarization to the M1 phenotype, upregulating the costimulatory molecules and inducing the generation of cytokines, but also facilitated antigen presentation.
View Article and Find Full Text PDFThe extensive use of imidacloprid (IMI) has led to its being frequently detected in natural water, also caused the potential damage to the ecosystem. Development of efficient, green and sustainable technique is demanded to eliminate this problem. A novel biochar (KMCBC) derived from agriculture waste of corn cob was first time co-modified by potassium hydroxide (KOH), ferric chloride (FeCl) and zinc chloride (ZnCl), which showed the greater adsorption amount (410 mg g at 298 K) for imidacloprid (IMI).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2021
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have gained increasing concern due to their persistent characteristics, wide distribution, biotoxicity, and bioaccumulative properties. The current remediation technologies for PFOA and PFOS are primarily focused on physical and chemical techniques. Phytoremediation has provided promising alternatives to traditional cleanup technologies due to their low operational costs, low maintenance requirements, end-use value, and aesthetic nature.
View Article and Find Full Text PDFIron/copper bimetallic nanoparticles based sludge biochar (Fe/Cu-SBC) was prepared by using a modified co-precipitation route. The Fe/Cu-SBC system prepared was subsequently applied to activate periodate (IO) to degrade diclofenac sodium (DCF) by using UV light at room temperature (25 °C). The physicochemical properties of both SBC and Fe/Cu-SBC such as morphology, physical properties, crystal structures and functional groups were examined.
View Article and Find Full Text PDFEnvironmental concentration imidacloprid (IMI) has become a potential risk to ecological safety and human health, therefore an efficient, sustainable and environment friendly approach was urgently needed for its removal. In this study, a novel graphene oxide supported magnetic sludge biochar composite (GO/CoFeO-SBC) was first time synthesized and assessed for IMI removal at environmental concentration level. The maximum adsorption capacity of GO/CoFeO-SBC for IMI was 8.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2021
Nanofiltration concentration leachate is a high concentration organic wastewater with low biodegradability and high toxicity. To explore the feasibility of a combined Heat/UV activated persulfate process on nanofiltration concentrated leachate, the effects of persulfate concentration, initial solution pH before reaction, UV-lamp power and reaction temperature on the removal of organic pollutant were systematically investigated. Results indicated that the maximum rate of chemical oxygen demand (COD), ammonia-nitrogen (NH-N) and absorbance of organic matter under UV light at 254 nm (UV) removal from the leachate were 65.
View Article and Find Full Text PDFIron/zinc (Fe/Zn), phosphoric acid (HPO) or in combination (Fe/Zn + HPO) modified sludge biochar (SBC) were prepared and tested in this study to adsorb fluoroquinolones antibiotics including ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) from water. Fe/Zn + HPO-SBC had an increased surface area (S), total pore volume (V), mesoporous volume (V), pore diameter (D) and oxygen-containing functional groups. It exhibited superior adsorption performance for CIP, NOR and OFL with the maximum adsorption amount of 83.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have attracted global attention due to their chemical durability, wide distribution, biotoxicity and bioaccumulative properties. Persulfate is a promising alternative to HO for advanced oxidation processes and effective for organic removal. In this review, persulfate activation methods and operational factors in persulfate-based PFOA / PFOS degradation are analyzed and summarized.
View Article and Find Full Text PDFA novel adsorbent of sludge biochar (SBC) and multi-walled carbon nanotube (CNT) composite was synthesized (CNT-SBC) to remove low concentrations of sulfamethoxazole (SMX) from water. The key factors of dose, contact time, pH and temperature were investigated. Higher dose of adsorbents provided more active sites for SMX adsorption.
View Article and Find Full Text PDFA novel approach was employed to load α-Fe2O3 and α-FeOOH onto sewage sludge biochar (SBC) with the purpose of efficient nickel (Ni) removal. A high Ni(II) adsorption capacity of 35.50 mg·g-1 in 100 ppm Ni(II) solution with 10 mg modified sewage sludge biochar (MSBC) was achieved.
View Article and Find Full Text PDFWaste printed circuit boards (WPCBs) containing various metals and hazardous materials are considered as a secondary resource and an environmental pollution source. A systematic overview of WPCB study was conducted by using CiteSpace. The relevant knowledge of 242 documents was collected from SCI-Expanded database (SCIE) and saved as txt files.
View Article and Find Full Text PDF