Dostarlimab, a programmed death receptor-1 (PD-1)-blocking IgG4 humanized monoclonal antibody, gained accelerated approval from the US Food and Drug Administration (FDA) in April 2021, and received a full approval in February 2023. Dostarlimab was approved for treating adult patients with mismatch repair deficient (dMMR) recurrent or advanced endometrial cancer (EC) that progressed during or after prior treatment who have no other suitable treatment options. Herein, we review the structure-based mechanism of action of dostarlimab and the results of a clinical study (GARNET; NCT02715284) to comprehensively clarify the efficacy and toxicity of the drug.
View Article and Find Full Text PDFMulti-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2024
Background: Chromosomal rearrangements involving the Mixed lineage leukemia (MLL) gene are observed in acute leukemia (AL) patients, which have poor prognosis, especially in infants. Hence, there is still a challenge to develop other effective agents to treat AL with MLL rearrangements (MLLr). MLL has been shown to rearrange with partner genes, of which the most frequently observed are AF4 and AF9.
View Article and Find Full Text PDFDeveloping antibiotic-free treatment strategies to cope with the crisis on drug-resistant bacteria, are urgently needed. Antibiotics-independent physical approaches, especially the non-invasive phototherapies, worked through the assistance of photosensitizer (PS), have geared intensive attention and interests. Here, composite porphyrin-based conjugated microporous polymer/graphene oxide, denoted as GO-TAPP, combining the advantages of each component perfectly, was developed as broad-spectrum antibacterial agent.
View Article and Find Full Text PDFThe FDA granted orphan drug designation to darovasertib, a first-in-class oral, small molecular inhibitor of protein kinase C (PKC), for the treatment of uveal melanoma, on 2 May 2022. Primary uveal melanoma has a high risk of progressing to metastatic uveal melanoma, with a poor prognosis. The activation of the PKC and mitogen-activated protein kinase pathways play an essential role in the pathogenesis of uveal melanoma, and mutations in the G protein subunit alpha q (GNAQ), and G protein subunit alpha11 (GNA11) genes are considered early events in the development of uveal melanoma.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) results from BCR-ABL oncogene, which blocks CML cells differentiation and protects these cells from apoptosis. T315I mutated BCR-ABL is the main cause of the resistance mediated by imatinib and second generation BCR-ABL inhibitor. CML with the T315I mutation has been considered to have poor prognosis.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a BCR-ABL fusion gene. Imatinib has significantly improved the treatment of CML as a first-generation tyrosine kinase inhibitor (TKIs). The T315I mutant form of BCR-ABL is the most common mutation that confers resistance to imatinib or the second-generation TKIs, resulting in poor clinical prognosis.
View Article and Find Full Text PDFTo develop next-generation nanomedicine, theranostic nanotherapeutic strategies are increasingly being emphasized. In recent years, it is observed that the effective lifetime of anti-bacterial and anti-cancer agent is diminishing, which undermines the economic incentives necessary for clinical development and therapeutic applications. Thus, novel formulations ought to not only kill drug resistant strains and cancerous cells but also inhibit their formation.
View Article and Find Full Text PDFThe binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory.
View Article and Find Full Text PDFReprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects.
View Article and Find Full Text PDFThe phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K or Na. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive form of hematological neoplasia characterized by failure of myeloid differentiation. AML is a leading cause of death from leukemia. Cytarabine chemotherapy resistance is a major source of refractory/relapsed AML.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a heterogeneous disorder characterized by the clonal expansion and differentiation arrest of leukemic cells in peripheral blood and bone marrow. Though the treatment using cytarabine-based protocol for AML patients with (8; 21) translocation has improved the 5-year overall survival rate, drug resistance continues to be the principal limiting factor for the cure of the disease. In addition, very few AML patients with mixed lineage leukemia gene rearrangements (MLLr) have a desirable outcome.
View Article and Find Full Text PDFHerein, we designed a new nanoplatform for combined PDT/PTT/CDT through simultaneously self-supplying HO and depleting GSH using one single laser irradiation. The nanoplatform was capable of generating multiple reactive oxygen species (ROS), such as O, O˙ and ˙OH, resulting in cell death. Moreover, the nanoplatform demonstrated low dark toxicity, high phototoxicity and better biosafety.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is a neoplastic disease characterized by the malignant proliferation of lymphoid cells in the blood and bone marrow. It accounts for approximately 75% of childhood leukemia. Lymphoblastic lymphoma (LBL) is a type of non-Hodgkin's lymphoma characterized by rapid growth and highly aggressive characteristics that occurs most commonly in adolescents and young adults.
View Article and Find Full Text PDFAcute leukemia (AL) is characterized by excessive proliferation and impaired differentiation of leukemic cells. AL includes acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Previous studies have demonstrated that about 10% of AML and 22% of ALL are mixed lineage leukemia gene rearrangements (MLLr) leukemia.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by reduced differentiation of myeloid cells and uncontrolled cell proliferation. AML is prone to drug resistance and has a high recurrence rate during treatment with cytarabine-based chemotherapy. Our study aims to explore the cell differentiation effect of a potent histone deacetylase inhibitor (HDACi), I13, and its possible mechanism on AML cell lines (Kasumi-1, KG-1, MOLM-13 and NB4).
View Article and Find Full Text PDFThe role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function.
View Article and Find Full Text PDFIn discovery of novel SIRT3 inhibitors for the treatment of cancer, a series of 2-(4-acrylamidophenyl)-quinoline-4-carboxylic acid derivatives were designed and synthesized. Among the derived compounds, molecule P6 exhibited SIRT3 inhibitory selectivity with IC value of 7.2 µM over SIRT1 (32.
View Article and Find Full Text PDFBackground: Histone lysine-specific demethylase 1 (LSD1) expression has been shown to be significantly elevated in gastric cancer (GC) and may be associated with the proliferation and metastasis of GC. It has been reported that LSD1 repressed tumor immunity through programmed cell death 1 ligand 1 (PD-L1) in melanoma and breast cancer. The role of LSD1 in the immune microenvironment of GC is unknown.
View Article and Find Full Text PDFIbrutinib, an oral small-molecule targeted drug, has been the first Bruton tyrosine kinase (BTK) inhibitor in the world to be approved for the market. It works by regulating cell proliferation, apoptosis and migration, and has been proven to exhibit high efficacy and good safety in the treatment of B-cell lymphomas, including chronic lymphocytic leukemia or small lymphocytic lymphoma and mantle cell lymphoma. However, some patients inevitably have drug resistance and disease recurrence, resulting in a poor prognosis.
View Article and Find Full Text PDFLeukemia is a type of malignant clonal disease of hematopoietic stem cells (HSCs). A small population of leukemic stem cells (LSCs) are responsible for the initiation, drug resistance, and relapse of leukemia. LSCs have the ability to form tumors after xenotransplantation in immunodeficient mice and appear to be common in most human leukemias.
View Article and Find Full Text PDFDifferentiation therapy with all-trans-retinoic acid (ATRA) in acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia (AML), has been extremely successful in inducing clinical remission in APL patients. However, the differentiation therapy of ATRA-based treatment has not been effective in other subtypes of AML. In this study, we evaluated a small molecule of -kaurene diterpenoid, Jiyuan oridonin A (JOA), on the differentiation blockade in AML cells with the mixed lineage leukemia (MLL) gene rearrangements (MLLr) in MV4-11, MOLM-13 and THP-1 cells.
View Article and Find Full Text PDFAcute myelogenous leukemia (AML) is characterized by blockage of cell differentiation leading to the accumulation of immature cells, which is the most prevalent form of acute leukemia in adults. It is well known that all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) are the preferred drugs for acute promyelocytic leukemia (APL). However, they can lead to irreversible resistance which may be responsible for clinical failure after complete remission (CR).
View Article and Find Full Text PDFThe emergence of infections caused by bacterial pathogens that are resistant to current antibiotic therapy is a critical healthcare challenge. Aminoglycosides are natural antibiotics with broad spectrum of activity; however, their clinical use is limited due to considerable nephrotoxicity. Moreover, drug-resistant bacteria that cause infections in human as well as livestock are less responsive to conventional antibiotics.
View Article and Find Full Text PDF